

Drug-induced liver injury: general concepts, interpretation of liver tests and common mistakes

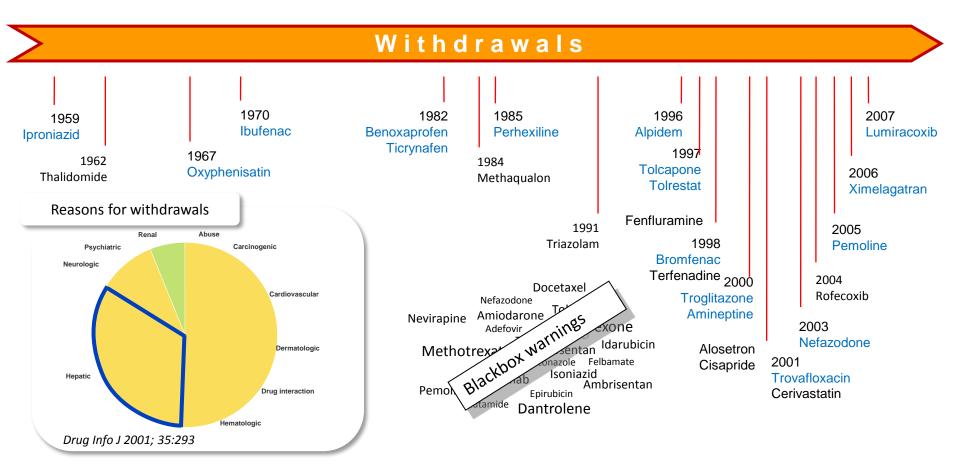
RAUL J ANDRADE

1st TRAINING COURSE, ACTION COST 17-112 PRO EURO DILI NET Málaga, 15st March, 2019

Drug-induced liver injury

"Adverse drug reaction manifesting in liver damage following intake of presecription drugs, over-the-counter treatments, herbals or dietary supplements"

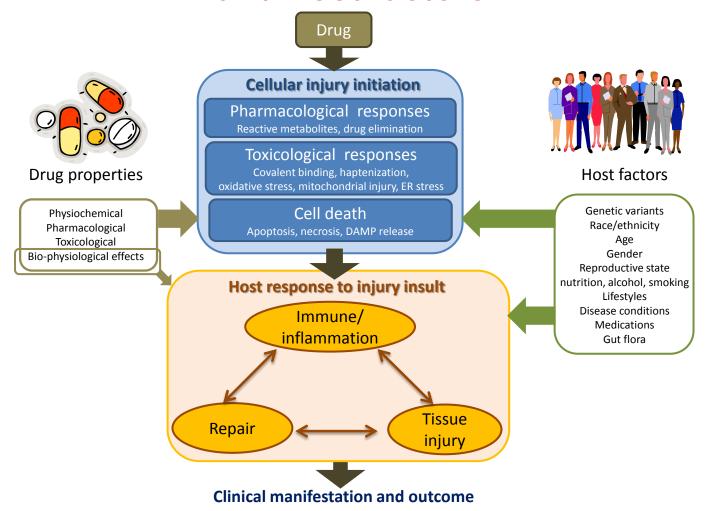
Intrinsic: dose-dependent, predictable reacion, e.g. acetaminophen (APAP) overdose


Idiosyncratic: unpredictable based on drug dose and pharmacological properties

Drug-induced liver injury (DILI)

Major threat to patients, substantial burden for drug development

- Leading cause of acute liver failure in the US
- 3% fatal outcome, 5% need for transplantation
- Most frequent reason for drug withdrawals


- Substantially reduces treatment options for patients
- Significantly contributes to attrition in development
- Major challenge: lack of suitable biomarkers

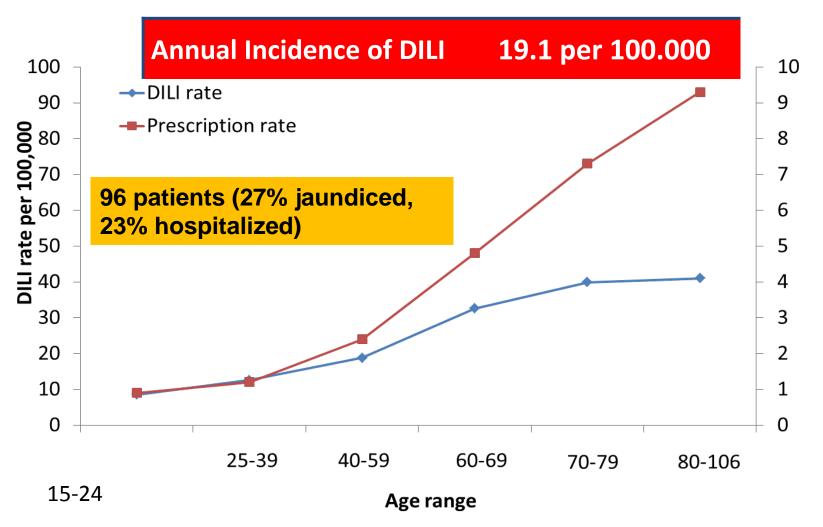
Idiosyncratic DILI: the interplay between drug and host factors

Chen, Suzuki, Borlak, Andrade , Lucena. J Hepatol 2015 ;63:503–514

Idiosyncratic drug-induced liver injury

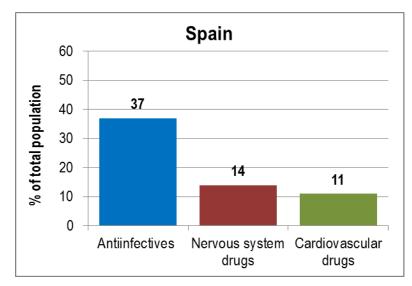
Population-based studies

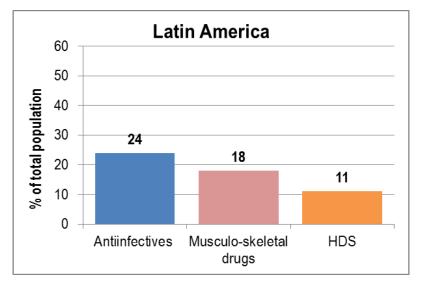
- France: 13.9 cases/100,000 inhabitants/year (Sgro et al., 2002)

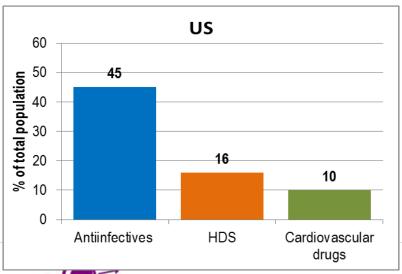

- Iceland: 19.1 cases/100,000 inhabitants/year (Björnsson et al 2013)

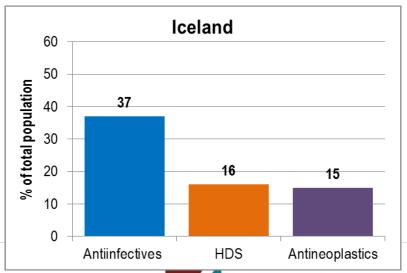
-Delaware: 2.7 cases/100.000 inhabitants/year (Vega et al Drug Saf 2017)

Epidemiology of Drug-induced Liver injury in Iceland n=251,860




Björnsson et al Gastroenterology 2013; 144(7):1419-1425





Most common causative drug classes in large DILI populations

LiverTox

Clinical and Research Information on Drug-Induced Liver Injury

Home NIDDK

NLM

SIS Home **About Us** **Contact Us**

Search Enter a drug name

Home

Introduction

Clinical Course

Phenotypes

Immune Features

Clinical Outcomes

Causality

Severity Grading

Likelihood Scale

Classes of Drugs

Submit a Case Report

Clinical Alerts/News

Conference **Proceedings**

Information Resources

Glossary

Abbreviations

SEARCH THE LIVERTOX DATABASE

Search for a specific medication, herbal or supplement:

Search

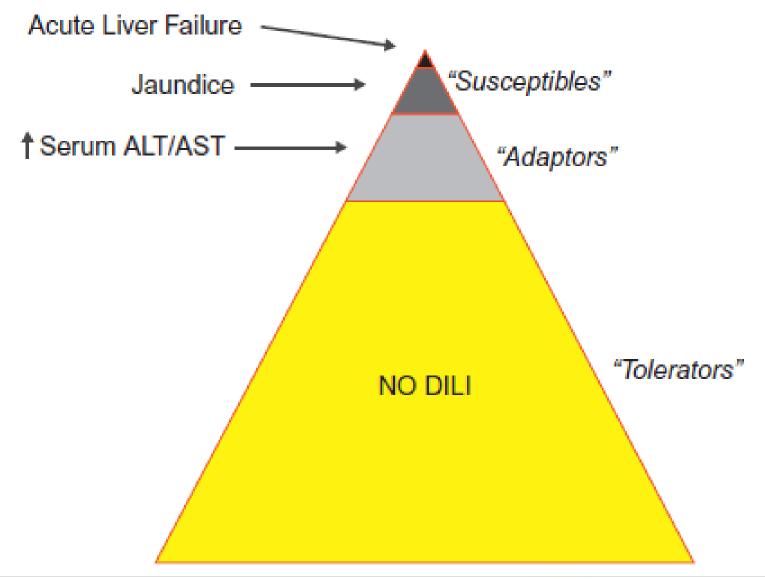
Browse by first letter of medication, herbal or supplement:

LIVERTOX provides up-to-date, accurate, and easily accessed information on the diagnosis, cause, frequency, patterns, and management of liver injury attributable to prescription and nonprescription medications, herbals and dietary supplements. LIVERTOX also includes a case registry that will enable scientific analysis and better characterization of the clinical patterns of liver injury. The LIVERTOX website provides a comprehensive resource for physicians and their patients, and for clinical academicians and researchers who specialize in idiosyncratic drug induced hepatotoxicity.

LIVERTOX content produced by the NIDDK and NLM is in the public domain and its free use is encouraged. It is requested that any subsequent published use be given appropriate acknowledgement.

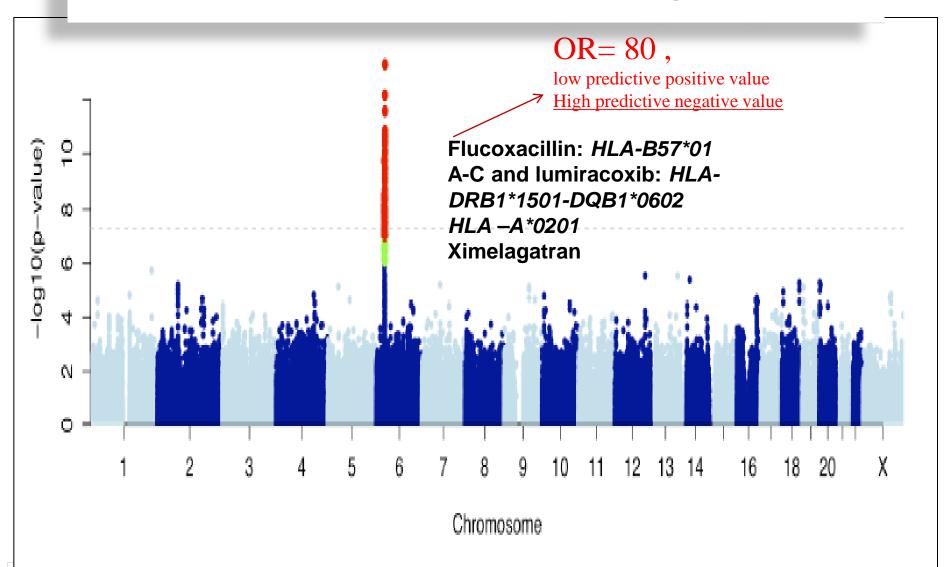
LiverTox

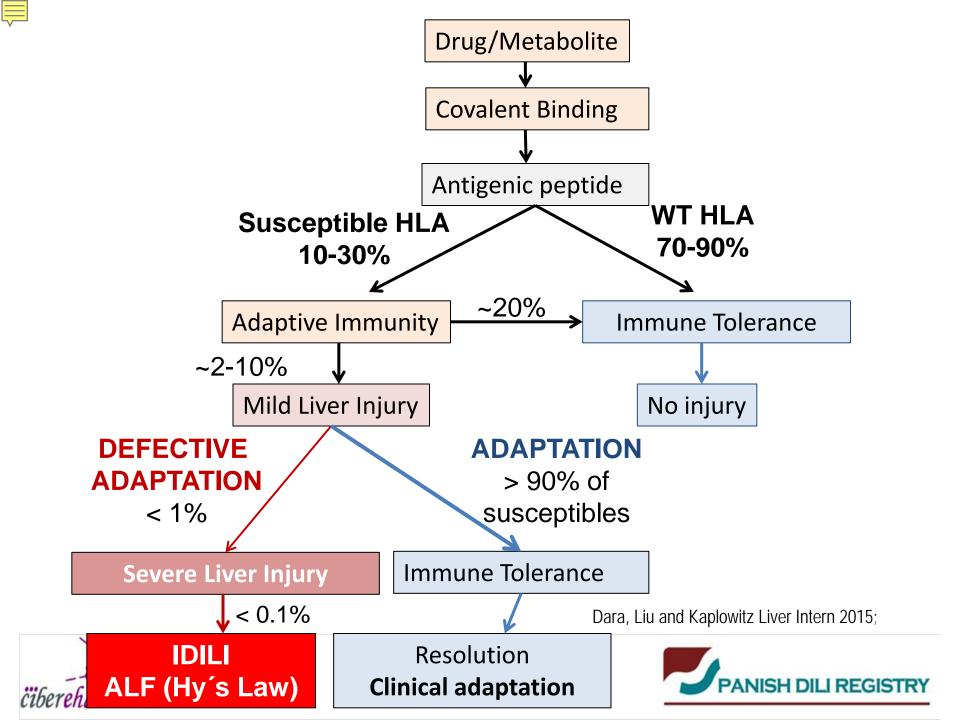
Clinical and Research Information on Drug-Induced Liver Injury


About Us Contact Us Search Enter a drug name

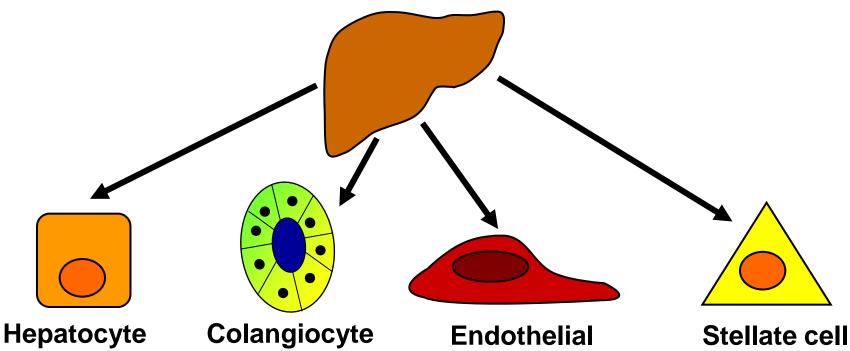
Categorization of Drugs Implicated in Causing Liver Injury: Critical Assessment Based on Published Case Reports

Einar S. Björnsson^{1,2} and Jay H. Hoofnagle³


Category A	The drug is well known, well described and well reported to cause either direct or
	idiosyncratic liver injury, and has a characteristic signature; more than 50 cases including case
	series have been described
Category B	The drug is reported and known or highly likely to cause idiosyncratic liver injury and has a
	characteristic signature; between 12 and 50 cases including small case series have been
	described
Category C	The drug is probably linked to idiosyncratic liver injury, but has been reported uncommonly
	and no characteristic signature has been identified; the number of identified cases is less than
	12 without significant case series
Category D	Single case reports have appeared implicating the drug, but fewer than 3 cases have been
	reported in the literature, no characteristic signature has been identified, and the case
	reports may not have been very convincing. Thus, the agent can only be said to be a possible
	hepatotoxin and only a rare cause of liver injury
Category E	Despite extensive use, no evidence that the drug has caused liver injury. Single case reports
	may have been published, but they were largely unconvincing. The agent is not believed or is
	unlikely to cause liver injury
Category	The drug is suspected to be capable of causing liver injury or idiosyncratic acute liver injury
E*	but there have been no convincing cases in the medical literature. In some situations cases of
	acute liver injury have been reported to regulatory agencies or mentioned in large clinical
	studies of the drug, but the specifics and details supportive of causality assessment are not
	available. The agent is unproven, but suspected to cause liver injury
C-+	
Category X	Finally, for medications recently introduced into or rarely used in clinical medicine, there may
Category X	be inadequate information on the risks of developing liver injury to place it in any of the five



GWAS: chromosome 6 (HLA genes)



Clinico-pathological patterns

Cholestatic hepatitis **Chronic hepatitis Esteatosis NASH**

oplasia

Acute and chronic Cholangitis

> **Sclerosing** cholangitis

cell

Veno-occlusive disease peliosis angiosarcoma

fibrosis

DILI presentation

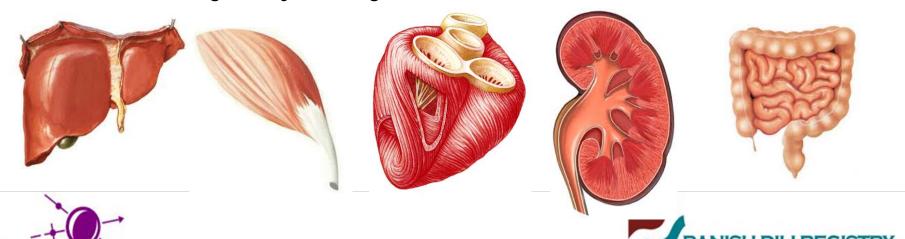
- Hepatitis/cholestasis «like» syndrome or abnormalities in liver enzymes
- Atypical phenotypes
 - -AIH
 - -NAFLD
 - -NRH, SOS, peliosis hepatis
- Hypersensitity syndromes (point to drug allergy and makes DILI more probable)
 - -Non-specific Rash
 - -Erythema multiforme
 - -Drug reaction with eosinophilia and systemic symptoms (DRESS)
 - -Steven-Johnson/toxic epidermal necrolysis
 - Rechallenge unintentional (6%)
 - Previous DILI episodes (1.2%)

Interpretation of toxic liver damage by liver biochemistry alterations

- What are liver enzymes?
- Biochemical tests that reflect the health or pathologic, mainly inflammation and alteration in liver function.
- Useful
 - Screening of diseases or check in health population
 - Study of persistent and unspecific symptoms
 - Evaluation previous to surgery or diagnostic or therapeutic procedure
 - Study of liver disease suspicion

Liver tests panel

- AST
- ALT
- Alkaline phosphatase
- GGT
- Bilirubin (total and direct)
- INR
- Others: albumin globulins,



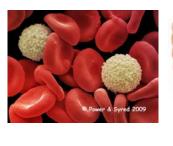
Source of AST and ALT

The transamination reaction ocurrs in several organs exchanging an amino group for a ketogroup

- ALT is also in the hearth and muscle but it is more concentrated in the liver
- Increases in both transaminases show liver injury
- Levels do not correlated with severity of the lesion
- Normal range vary among laboratories (31-72 U/L)

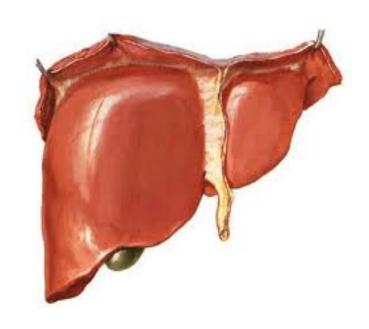
What does an elevated ALT value mean?

- It is not a test of liver function
- It does not necessarily predict worse effects to come (in a given person)
- It is not a valid measure of severity of liver injury or dysfunction.
- It is too unspecific to be reliable in screening for relatively rare effects on the liver.
- ALT remain the hallmark for detecting and classifying liver damage in DILI


Source of Alkaline Phosphatase

- •Physiologic increase in the 3 first months of life, puberty (2-5 times higher than in adults) with a gradual increase between 40–65 years old mainly in women.
- •In smokers ALP can be a 10% higher.

 People with blood type B and 0 could have an increase in ALP after a fatty meal due to liberation of intestinal



Source of GGT

The foremost value of GGT is to confirm the hepatic origin of ALP

Source of bilirubin

Serum total biliruin is an indicator of liver function (the ability of the liver to clear plasma of bilirubin)

Alteration of liver profile

Sodio		135	mEq/L	135 - 145
Potasio		3.7	mEq/L	3.5 - 5.0
Cloro		102	mEq/L	85 - 110
Calcio		9.2	mg/dL	8.5 - 10.5
L.D.H	*	1715	U/L	84 - 246
GOT -ASAT-	*	1922	U/L	10 - 37
GPT -ALAT -	*	633	U/L	10 - 65
Gamma -GT	*	506	U/L	5 - 85
Fosfatasa Alcalina (ALP)	*	434	U/L	50 - 136
Bilirrubina Total		1.33	mg/dL	0.25 - 1.50
Bilirrubina Directa	*	0.93	mg/dL	0.10 - 0.50
Proteínas Totales		7.3	g/dL	6.4 - 8.2
Albúmina Sérica		3.9	g/dL	3.3 - 5.2
Cociente Albúmina / Globulina :		1.2		

Alteration of liver biochemistry

Aspartato transaminasa	*	116	U/L	13 - 40
Alanina transaminasa	*	235	U/L	7 - 40
Gamma glutamiltransferasa	*	622	U/L	15 - 85
Fosfatasa Alcalina	*	246	U/L	45 - 117
Bilirrubina Total	*	7.49	mg/dL	0.20 - 1.00
Bilirrubina Directa	*	5.88	mg/dL	< 0.30

What to do?

- A careful interrogatory:
 - Drugs or alcohol intake
 - Risk behaviour
 - Underlying disease
- A complete diagnostic work-up including blood analytes and a imaging tests

Coagulation parameters

Tiempo de protrombina			
Tiempo de protrombina (segundos)	13.4	seg	10.0 - 15.0
Tiempo de protrombina (porcentaje)	80	%	70 - 130
Tiempo de protrombina (ratio)	1.2	ratio	0.8 - 1.2
Tiempo de protrombina normalizado (INR)	1.1	INR	0.8 - 1.2
Tiempo de tromboplastina parcial ac	tivada		
Tiempo de tromboplastina parcial activada (segundos)	25.8	seg	25.0 - 38.0
Tiempo de tromboplastina parcial activada (ratio)	1.0	ratio	0.8 - 1.2
` '			

Virus serology

HBsAg Negativo

Anti-HBs Negativo

Anti-HBc Negativo

Anti-HAV-IgM Negativo

Antc-Virus Hepatitis C Negativo

Citomegalovirus IgG Positivo

Citomegalovirus IgM Negativo

Herpesvirus IgG Pendiente

Herpesvirus IgM Pendiente

Epstein Barr IgG Negativo

Epstein Barr IgM Negativo

Serum proteins

		-		
Proteínas Totales		6.5	g/dL	6.4 - 8.2
PROTEINOGRAMA				
Albúmina	*	3.4	g/dL	3.8 - 4.2
Alfa 1 Globulina	*	0.4	g/dL	0.4 - 0.7
Alfa 2 Globulina		0.7	g/dL	0.6 - 1.0
Beta Globulina	*	0.5	g/dL	0.5 - 0.8
Gamma Globulina	*	1.7	g/dL	0.7 - 1.3
Cociente A/G	**	1.1	(m)	1.2 - 2.2
Albúmina %		51.60	%	50.30 - 63.60
Alfa 1 %		5.40	%	4.80 - 10.00
Alfa 2 %		10.20	%	8.40 - 15.00
Beta %		7.20	%	7.20 - 11.90
Gamma %	*	25.60	%	9.50 - 19.90
Comentario (proteinograma)		Componer monoclon gamma	nte al en fracción	
Inmunoglobulina A	*	41	mg/dl	70 - 400
Inmunoglobulina G	*	2000	mg/dl	700 - 1600
Inmunoglobulina M	*	15	mg/dl	40 - 230
Alfa1 -Antitripsina		156	mg/dL	90 - 200
Ceruloplasmina	*	18	mg/dl	20 - 60
Cobre en Suero		120.0	mcg/dl	70.0 - 152.0

Screening for Autoimmune disorders

- Antinuclear autoantibody (ANA)
- Anti-smooth muscle autoantibody (ASMA)
- Anti liver kidney microsomal type 1 autoantibody (AntiLKM-1)
- Antimitochondrial autoantibody (AMA)
- IgG levels

Imaging techniques

- Abdominal Ultrasound
- CT
- MRI (ERCP)

Common patterns of liver biochemistry abnormalities

- Pattern with predominance of marked cytolysis with high levels of aminotransferases
- Chronic and recurrent moderate increase in transaminases
- Pattern with predominance of cholestasis (mixed cytolysis and alkaline phosphatase)
- Isolated increase in bilirubin
- Isolated increase in alkaline phosphatase and/or GGT

Pattern with markedly raised aminotransferases

- Acute viral hepatitis (A, B, C, E)
- Autoimmune hepatitis.
- Ischemic hepatitis.
- Unknown etiology hepatitis

Chronic and recurrent moderate increase in transaminases

- Chronic hepatitis B
- Chronic hepatitis C
- Chronic hepatitis E (infrequent)
- Non alcoholic fatty liver disease
- Alcoholic fatty liver disease
- Hemocromatosis
- Wilson disease

Pattern with predominance of cholestasis (mixed cytolisis /ALP + GGT)

- Obstructive biliary malignacies
- Liver metastasis
- Choledocolitiasis
- Primary biliary cirrhosis
- Primary sclerosing cholangitis.

Isolated increase in ALP Isolated increase in GGT

- Growth
- Bone metastasis
- Paget disease
- Others (physiologic: pregnancy)

- Alcoholism
- Obesity
- Drugs (phenytoin)

Isolated increase in bilirubin

- Gilbert syndrome
- Hemolysis (increase in LDH)

Key concepts when assessing liver biochemistry in DILI suspicion

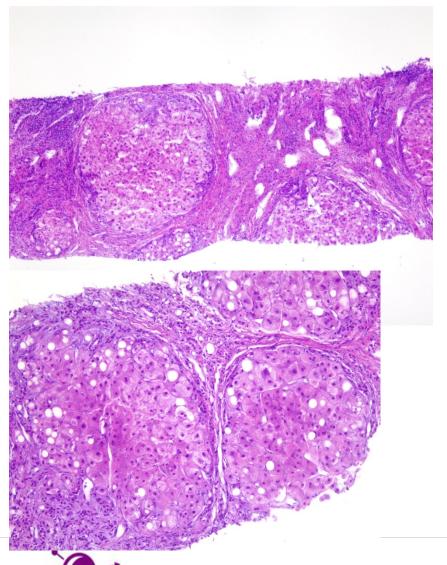
- Isolated increase in GGT does not reflect liver injury (enzimatic drug induction)
- Isolated increase in ALP is associated with physiological and pathological conditions other than liver injury (i.e.puberty, pregnancy, bone metastasis)
- ALT, ALP and total bilirubin should be screened in every DILI suspicion

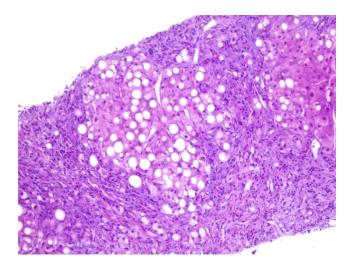
Key concepts when using liver biochemistry in DILI suspicion (cont.)

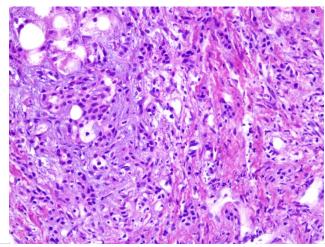
- Elevated ALT itself is useful for detecting liver damage but not severity of whole liver impairment
- Liver biochemistry may not represent the true onset time of liver cell injury, which may already be advanced, subsiding or past when first found
- To determine how severe the injury is and whether it is progressing or regressing
 - Immediate testing and serial measurements of ALT, total bilirubin and INR is required
 - Diagnostic work-up for alternative causes should start inmediatly

Clinical case 1

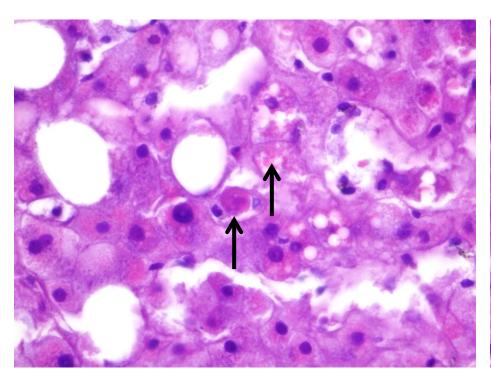
- A 37 yr female (BMI 24.6) started azithromycin (500 mg/d) during 3 days in Nov 2013, followed by amoxicillin-clavulanic acid (immediately before suspending azithromycin for 7 days) because of respiratory tract infection. No other drugs.
 - Previously diagnosed of cholestasis of pregnancy and diabetes during pregnancy in 2011
- While on amoxicillin-clavulanate she experienced dark urine, pale stools and itching. At examination she was slightly jaundiced
 - Liver tests at admission TB: 3,24 (Normal < 1,1mg/dL), AST 427 (Normal < 40UI/L), ALT 602 (Normal < 42 UI/L), ALP 216 (Normal < 130UI/L). Colagulation was normal. Blood cell count 2.7 x 10⁹/L eosinophils 2.2%)
 - Diagnostic workup ruled out viral hepatitis A, B, C, E. Serum
 autoantibodies were negative.

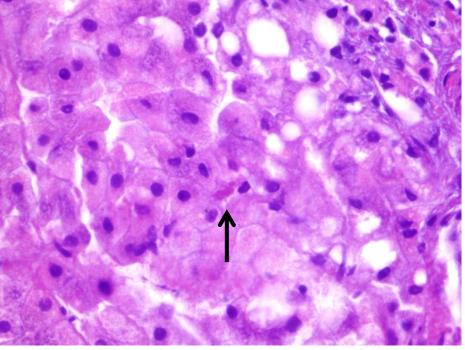

Clinical case 2


- 44 yr female, (BMI 28.9) started tamoxifen on Jan 2003 after breast cancer surgery.
 - Baseline liver tests: AST 68 U/L (normal < 35), ALT 86 U/L (normal<43), and GGT 280 U/L (normal < 35), with normal TB and ALP.
- In June 2003 jaundice
 - TB 1.85 mg/dL, AST 186 U/L, ALT 112 U/L, and GGT 446 U/L.
- TB reached 3.68 mg/dL and tamoxifen was discontinued on December 2003
- She voluntary decided to reintroduce tamoxifen on March 2004
 - TB 10.83 mg/dL, AST 154 U/L, ALT 47 U/L, ALP 132 U/L (normal < 100) and GGT 351 U/L.
 - Serology ruled out viral causes and screening for autoantibodies was negative



Liver biopsy





Liver biopsy

