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DILI affects patient safety
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Current knowledge gaps in DILI
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Methodological Challenges
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Multi-phasic DILI mechanism

J Hep 2015 63 (2): 503



Advantages in big data analysis
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Advantages in big data analysis

• Time- and cost-efficient hypothesis 
generation

• Complements clinical DILI investigation



Influence of Medication on Injury and Repair
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Drug classes that significantly influence DILI reporting frequency

Regul Toxicol Pharmacol 2015 72(3): 481



Theoretical framework of DILI mechanism

Regul Toxicol Pharmacol 2015 72(3): 481





Why EMR data? 

•Provides controls and cases 

• Risk factor analysis

• Age, sex/gender, racial differences in drug-specific DILI

• Non-genetic risk factors
• Drug exposure (duration, dose)
• Co-medications
• Comorbidities

•Limitations in existing data source (i.e., AERS)

•Pharmacovigilance without counting on voluntary 
reporting 

•Automated EMR alerting system
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Strategies for developing DILI 
phenotype algorithm





Low performance of published DILI phenotype algorithms
Pooled PPV =14.6% 95% CI [10.7-18.9]

Liver Int 2018;38:742



Pre-specified study drugs improved the performance
PPV =17.7% vs. 11.6% (p=0.053)

Liver Int 2018;38:742



Available drug references



US-marketed drugs (N=399) 
identified three different studies

Drug Discov Today. 2016 Apr;21(4):648



Dig Dis Sci 2017 62: 615-625
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Drug-induced liver injury misdiagnosed 

138 drug-related adverse events 
reported by UK hospitalists & 
primary MDs1

47% 
unrelated
to drug

38% drug 
related

15%
unclear

Chart review & 
RUCAM scoring 

 A minority of these hepatic adverse events were drug-related

 correct diagnosis was delayed an average of >3mos  

Aithal et al. Br Med J 1999: 319:1541



Pharmacoepidemiology and Drug Safety, 2011



High PPV to detect drugs with hepatotoxicity 





Experience using VA EMR
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VHA DILI database project (PPO 15-155)

• Multidisciplinary research team

• ~8.7 million veterans who received any of 124 study drugs 
exhibiting hepatotoxicity 

explore risk factors and disparities in risks and phenotypes
for drug-specific DILI

discovers “unrealized” combinations of DILI risk 
factors 



Database Design



Methods – pilot study population

•Single prescription

•Recurring prescriptions

Pharmacoepidemiol Drug Saf 2013;22:190



DILI case identification

•High-risk DILI period

• Liver events: acute liver injury in high-risk periods 
•ALT ≥ 5xULN or ALP ≥ 2xULN

Pharmacoepidemiol Drug Saf 2013;22:190-8



A: 30 days after drug discontinuation

B: 90 days after drug initiationA

High risk time period

High risk time period

30 60 90 Days-30 0-60-90

≈

-360

Drug exposure

1) ALT>5 ULN/BLM or ALP>2 ULN/BLM
2) High risk period
3) Excluding other causes of acute liver injury within 30 
days after liver events

Liver events

B

Exposure definition and case identification

Short prescription

Long prescription (≥60days)



DILI phenotype algorithm using AMX/CA pilot cohort



Study sub-populations



ICD-9 codes exclude other acute liver injury

Pharmacoepidemiol Drug Saf 2013;22:190-8



Study demographics

Summary statistics

Total exposures 1,843,650 

Total patients 1,096,231

Age, years 59 ± 15

Gender

Men 999223 (91%)

Women 97008 (8.8%)

Race/ethnicity

White 697465 (63.6%)

Black 190989 (17.4%)

Hispanic 56287 (5.1%)

others 151490 (13.8%)



84% and 33% had liver chemistries during 
pre- and post-exposure periods, respectively   

Pre-exposure period

High-risk period Available Not available Sum

Available 308281 56620 364901

Not available 610328 121002 731330

SUM 918609 177622 1096231

28%

84%

33%

731330 ‘controls’ had no liver chemistries in high risk period 
- implies ‘clinically significant’ DILI is absent 
- resulting in potential underestimation of DILI incidence



DILI frequency increased with age, male 
gender, Hispanic/unknown races

Computed using ‘Healthy’ Population



Validation analyses of DILI phenotype algorithm



Review results
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Challenges in DILI identification using 
EMR data from multiple sources
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