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Abstract: Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an
uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver
laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mecha-
nisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic
activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g.,
proteins, DNA), forming protein adducts—neoantigens—that lead to the generation of oxidative
stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead
to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune
response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific
human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array
of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione
(GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in
detoxification. These get compromised during DILI, triggering an imbalance between oxidants and
antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress,
several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and
microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanis-
tic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with
a special focus on the role of oxidative stress and the development of new biomarkers.

Keywords: DILI; oxidative stress; risk factors; biomarkers; mechanisms

1. Introduction

Drug-induced liver injury (DILI) is an adverse reaction caused by exposure to drugs
and herbal medicines or other xenobiotics. Depending on the presumed mechanism of ac-
tion of the causative drug, DILI is typically classified as intrinsic (direct) or idiosyncratic [1],
although indirect injury is emerging as a third type [2]. Intrinsic DILI is related to the
cytotoxic properties of the causative drug or its metabolite(s). In this case, liver injury is
dose-dependent and predictable, and damage can be reproduced in animal models [3].
Acetaminophen (APAP) toxicity is the most common cause for this type of DILI [4–7]. In
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contrast, idiosyncratic DILI is mostly host-dependent, multifactorial and unpredictable,
since it is determined by both the properties of the drug and its interaction with environ-
mental and host factors [8]. Idiosyncratic DILI is usually not dose-dependent, although the
exposure to a threshold dose in each susceptible individual is necessary [9,10]. Moreover,
the delay between starting the drug and the onset of clinical signs of liver injury is another
characteristic of idiosyncratic DILI. Indirect liver injury is caused by an indirect action of
the drug on liver or immune system, and can induce a new liver condition or exacerbate a
preexisting one, such as worsening of hepatitis B or C.

The lines that distinguish types of hepatotoxicity are blurred, and majority of drug-
induced liver reactions are considered idiosyncratic. Indeed, this is an unresolved issue
and rather an academic classification as research over the last years has demonstrated that
there are host susceptibility factors that influence the risk of intrinsic damage and, on the
contrary, for drugs that are believed to cause idiosyncratic liver damage, there might be a
dose threshold. Therefore, unless stated otherwise, the term DILI is used for idiosyncratic
drug-induced hepatotoxicity in this review.

Due to its unpredictability and poorly understood pathophysiology, DILI is considered
an exclusion diagnosis and, therefore, a diagnostic challenge [11,12].

1.1. Epidemiology

The true incidence of DILI is difficult to establish due to the rarity of the condition and
the lack of homogenous diagnostic criteria across studies [13]. In retrospective studies based
on medical records from patients of the Sahlgrenska University Hospital (Sweden) and the
UK-based General Practice Research Database, DILI annual incidence was established to
be 2.3 and 2.4 cases per 100,000 inhabitants, respectively [14,15]; while in population-based
prospective studies in France and Iceland, DILI annual incidence was 13.9 and 19.1 cases
per 100,000 inhabitants, respectively [16,17]. Due to the high frequency of polymedication,
demographic changes with a growing aging population, and the increasing consumption
of herbal and dietary supplements (HDS), DILI incidence is expected to rise in the future.
Interestingly, in western countries, DILI is mainly caused by pharmacological drugs,
contrary to Asian countries, where herbal products and Traditional Chinese Medicines
predominate [18]. However, herbal-induced liver injury (HILI) is increasing worldwide
due to the rise in the use of herbal supplements and remedies, representing a major
health problem [19]. Still, hepatotoxicity of HDS is particularly difficult to demonstrate
due to the difficulty in determining the toxic(s) compound(s) and the frequently hidden
self-medication [20].

DILI can be caused by a wide variety of drugs, including antibiotics, cardiovascu-
lar drugs, central nervous system (CNS) agents, nonsteroidal anti-inflammatory drugs
(NSAIDs), and others, such as HDS (Table 1). Due to the low frequency of DILI and the
heterogeneity of presentation as it may mimic any other acute or chronic liver disorder,
it is usually recognized at post-marketing, being a reason for drug withdrawal and the
adoption of regulatory measures, bearing a high impact on drug development, regulatory
bodies and physicians and patients alike [21].

1.2. Diagnosis

The clinical presentation of DILI is very variable in severity and phenotypic expression,
ranging from asymptomatic elevation of liver enzymes to acute liver failure (ALF). Other
more common causes of hepatic injury must be evaluated and excluded first. DILI diagnosis
is currently based on a comprehensive clinical history, detailed drug exposure investigation,
exclusion of common causes of hepatic injury according to clinical context and pattern of
laboratory liver abnormalities and the application of clinical assessment scales to determine
the likelihood of the reaction. Therefore, physician’s suspicion of DILI is a first step in
approaching this challenging diagnosis [23].
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Table 1. Drugs currently associated with drug-induced liver injury (DILI).

Drug Indication Type Drug Indication Type

Abacavir Antiretroviral H/C Allopurinol Gout prophylaxis H

Amiodarone Anti-arrhythmic H Amodiaquine Malaria treatment H

Amoxicillin–
clavulanic

acid
Antibiotic C/M

Angiotensin
-converting

enzyme inhibitors
Hypertension C

Atorvastatin Hypercholesterolemia H/C Azathioprine Immunosuppressor C

Bosentan Hypertension H/M Carbamazepine Anticonvulsant H/C/M

Chlorpromazine Antipsychotic C/M Clozapine Antipsychotic H/M

Cyclosporine A Immunosuppressor C Dantrolene Muscle relaxant H

Diclofenac Analgesic H Disulfiram Alcoholism H

Erythromycin Antibiotic C/M Felbamate Anticonvulsant H

Fenofibrate Hypertriglyceridemia
and dyslipidemia H Floxuridine Antineoplastic H/C

Flucloxacillin Antibiotic C Flupirtine Analgesic H

Flutamide Nonsteroidal
antiandrogen H/C/M Gabapentin Anticonvulsant C

Halothane Anesthetic H Hydralazine Antihypertensive H

Ibuprofen NSAID H Infliximab
Monoclonal antibody

(Crohn’s disease,
rheumatoid arthritis)

H

Isoniazid Anti-tuberculotic H Ketoconazole Fungicidal H/C

Lamotrigine Anticonvulsant H Lapatinib Breast cancer H

Leflunomide Immunomodulatory
agent H/C Lisinopril Antihypertensive H

Methotrexate Antineoplastic H Methyldopa Antihypertensive H

Minocycline Antibiotic H Nefazodone Antidepressant H

Nevirapine Nonnucleoside reverse
transcriptase inhibitor C Nitrofurantoin Antibiotic H/M

Pazopanib Antitumor activity M Phenytoin Anticonvulsant H/M

Propylthiouracil Antithyroid H Pyrazinamide Anti-tuberculotic H

Quinidine Antiarrhythmic C/M Rifampicin Anti-tuberculotic H

Statins Hypolipidemic H/C Sulfasalazine Antirheumatic M

Sulfonamides Antibiotic H/C Sulindac NSAID H/C/M

Tamoxifen Nonsteroidal
antiestrogen H/C/M Terbinafine Fungicidal H/C

Thioguanine Antitumor activity M Ticlopidine Anti-platelet C

TMP-SMX Antibiotic H Tolcapone Parkinson’s disease
therapy H

Tolvaptan Hyponatremia
treatment H/M Valproic acid Anticonvulsant H

H (hepatocellular), C (cholestatic), M (mixed). No data shown for withdrawn drugs. Updated information on the diagnosis, cause,
frequency and patterns of liver injury induced by both prescription and non-prescription medications can be consulted in LiverTox
(http://livertox.nlm.nih.gov, accessed on 8 January 2021). Moreover, categorization of drugs associated to DILI based on documented
hepatotoxicity in the literature is available [22].

http://livertox.nlm.nih.gov
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Clinically, DILI patients present an extensive range of unspecific symptoms, which can
include fatigue, nausea, abdominal pain, pruritus and jaundice, that are frequent in other
liver diseases. If the clinician has a suspicion of DILI, after detection of liver biochemistry
abnormalities, a detailed interview with the patient is essential to obtain information
about the exposure to prescription and non-prescription drugs, HDS, as well as latency
(time from drug initiation to liver damage detection) and effect of suspected causative
agent withdrawal [21]. In fact, withdrawal of the offending medication is critical in DILI
suspicion and management.

An international consensus group and the European Association for the Study of
the Liver (EASL) have proposed some threshold criteria for definition of a case as being
DILI [3,23,24]: Serum alanine aminotransferase (ALT) elevation ≥ 5 times the upper limit
of normal (ULN), serum alkaline phosphatase (ALP) ≥ 2 × ULN or the combination of
ALT ≥ 3 × ULN with simultaneous elevation of total bilirubin (TBL) exceeding 2 × ULN.

Since liver biopsy is not usually performed for DILI diagnosis, liver biochemistry is
used to define the type of liver damage. The different laboratory patterns can be determined
by the R-ratio of serum markers of liver injury (ALT/ALP) at DILI presentation [24]. It
is considered hepatocellular when ALT ≥ 5 × ULN alone or when R-ratio is ≥5, and
cholestatic when ALP ≥ 2 × ULN alone or if R-ratio is ≤2. Mixed liver injury is considered
when ALT ≥ 3 × ULN, ALP ≥ 2 × ULN, and R-ratio is 2–5 [25]. Hepatocellular injury
is characterized by an elevation of serum transaminases related to hepatocyte damage
triggered by the toxin, and it is more likely to be associated with a poor outcome. Cholestatic
injury is manifested by increased levels of ALP, γ-glutamyl transpeptidase (γ-GT), and
conjugated bilirubin in serum [26], suggesting impaired bile flow regulation leading to bile
deposition in the liver. It is associated with not negligible mortality. Meanwhile, mixed
liver injury has the lowest mortality rate [23]. Several cohort studies show that acute
hepatocellular hepatitis is the most common manifestation of DILI [14,25,26].

Cholestatic injury is associated with pruritus and asthenia most frequently than
other phenotypes. Some DILI patients also show immunoallergic features and/or skin
reactions (i.e., cutaneous rash), which seems to have more severe outcomes [27–29]. For
example, drugs such as carbamazepine, phenytoin, and dapsone are associated with liver
injury accompanied with cutaneous hypersensitivity features [30,31]. In addition, DILI
can present with other phenotypes [23] as drug-induced autoimmune hepatitis (DILI-
AIH), which involves hepatocellular liver damage with features of idiopathic AIH or
drug-induced fatty liver disease, which is characterized by an accumulation of lipids in
hepatocytes (steatosis).

After the exclusion of a potential infinite list of alternative explanations, the appli-
cation of the RUCAM (Roussel Uclaf Causality Assessment Method)/CIOMS (Council
for International Organizations of Medical Sciences) score is used to translate the DILI
suspicion into categories of probability. RUCAM provides a sum score that ranges from
−5 to +14 points, while evaluating seven domains (time to onset of the reaction from both
the beginning and cessation of use of the causative agents; course of the reaction; risk
factors; concomitant medications; non-medication related causes; previous information on
the medication and response to re-administration). According to the final score obtained,
the hepatic reaction is classified into five categories of probability: highly probable (>8),
probable (6–8), possible (3–5), unlikely (1–2), or excluded [32,33].

Currently, no reliable in vitro test exists to support the diagnosis of DILI. Recently, an
in vitro assay to identify the drug responsible for causing DILI using monocyte-derived
hepatocyte-like (MH) cells from patients with DILI suspicion has been proposed [34]. These
cells are derived from peripheral monocytes and retain several of their characteristics,
showing inducible activities of different cytochrome P450 (CYP450) enzymes, reflecting
the activities in primary human hepatocytes of the individual [35]. However, this method
awaits external validation.
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2. Potential Mechanisms Involved in DILI Pathogenesis

The liver plays an important role in metabolizing drugs or exogenous toxicants, pro-
tecting the organism from potential toxic chemicals [36]. Bioactivation processes of parent
drugs rendering reactive metabolites and the mechanisms involved in detoxification and
excretion of xenobiotics (most of them under genetic control) are critical for understanding
the mechanisms of DILI [37]. However, many different hypotheses have been proposed
due to the multivariant nature of the disease [38].

2.1. Drug Factors

Physicochemical and toxicological drug properties affect DILI risk [39], contributing to
initial cell damage that induces an adaptive and innate immune response. First, currently
there is a consensus about the necessity of drug/metabolite exposure to a specific threshold
level to DILI be initiated [8]. In fact, there is an association between daily dose of a drug
and poor DILI outcome [10].

Drug lipophilicity is also associated with DILI risk, since it can enhance drug uptake
from blood into hepatocytes, which results in an accumulation of reactive metabolites. In
fact, a lipophilicity of LogP ≥ 3 in combination with high daily dose of drug (≥100 mg) are
associated with severe DILI [40].

Finally, the potential of a drug to form reactive metabolites is also associated with
the pathogenesis of DILI [41], due to their own toxicity and their ability to form drug-
endogenous proteins adducts, which can activate the immune response [42]. However,
drugs unknown to form reactive metabolites, such as ambrisentan, flecainide, maraviroc,
or bosentan can also cause DILI [43].

2.2. Metabolic Mechanisms

Hepatocyte exposure to increased cellular stress is assumed to be the initial step in DILI
development. Initial cell damage is induced by drugs and/or their reactive metabolites via
covalent binding or direct damage to mitochondria, which leads to oxidative stress and the
activation of stress-sensing signaling pathways, impairment of the mitochondrial function,
and endoplasmic reticulum (ER) stress (Figure 1).

The mechanisms involved in the detoxification of drugs are critical in understanding
the different processes triggered during DILI. The human CYP450 are membrane-bound
proteins located in either the mitochondrial inner membrane or the smooth endoplasmic
reticulum of hepatocytes, where they are responsible for the oxidation, peroxidation, and
reduction being necessary for drug metabolism (see Section 3.4.1). The reactive metabolites
generated during the metabolism of drugs are the main responsible for the sharp increase in
oxidative stress directly generated in mitochondria of the injured hepatocyte [13]. Increased
reactive oxygen species (ROS) can directly damage DNA, proteins, enzymes, and lipids in
cells and tissues and induce immune-mediated liver damage. Some drugs (e.g., valproic
acid, [VPA]) can induce enhanced generation of ROS and triggering c-Jun N-terminal kinase
(JNK). Thus, leading to hepatocyte death [32]. This is a biphasic process: the early stage
involves glycogen synthase kinase-3β (GSK-3β) activating mixed-lineage kinase-3 (MLK3),
whilst the late phase is mediated by apoptosis signal-regulating kinase-1 (ASK1), thereby
activating JNK [44], which translocates to the mitochondria and triggers hepatocyte death,
resulting in the amplification of mitochondrial ROS, such as in APAP-derived toxicity [45].

Furthermore, damage-associated molecular patterns (DAMPs) released from injured
hepatocytes activate innate immune responses, including cytokines such as tumor necrosis
factor-alpha (TNFα), Fas ligand (FasL) or TNF-related apoptosis-inducing ligand (TRAIL)-
expressing natural killer or natural killer T cells and neutrophils, which can activate death
receptors such as TNF-R, FasR, and DR5. Besides, the activation of the necrotic cell death
pathway is also present in DILI [46]. Necrosis involves cell swelling, membrane bleb
formation, and eventually the rupture of plasma membrane, causing the release of cel-
lular components from necrotic cells that elicit an inflammatory response. Alternative
mechanisms of regulated necrosis have emerged in recent years, such as necroptosis, py-
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roptosis, and ferroptosis. However, its relevance to acute or chronic DILI needs further
research. Consequently, in DILI, altered cell functioning causes exacerbated ROS that fur-
ther produce loss of hepatocyte function, and damaged hepatocytes release ROS, increasing
overall oxidative stress, and ultimately leading to the activation of apoptotic and necrotic
pathways [46].
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Figure 1. Cellular and molecular mechanisms involved in idiosyncratic drug-induced liver injury. Two key players in DILI,
drug and host factors may interact in a multi-faceted manner at different functional pathways and determine individual
susceptibility, clinical phenotype, and outcome. The hepatocyte damage caused by the action of drugs induce a complex,
multivariant host response. First, cellular damage (oxidative stress, mitochondrial dysfunction, endoplasmic reticulum
(ER) stress, and bile salt export pump (BSEP) inhibition, between others) can lead to cell death, provoking cell swelling and
eventually rupture of the cell membrane, with the release of intracellular content, including damage-associated molecular
patterns (damage-associated molecular patterns (DAMPs), such as high mobility group box protein 1 (HMGB1), heat shock
proteins (HSP), ATP, S100 proteins, etc.) which stimulate a strong inflammatory/immune response. Inflammasome has
also a very important role in development of liver injury, inducing cytokines secretion to attract and activate macrophages
and neutrophils. Moreover, drugs can also alter intestinal microbiota (dysbiosis), and increase intestinal permeability,
releasing bacterial products (Pathogen-associated molecular patterns, [PAMPs]) into the bloodstream. PAMPs (bacterial
lipopolysaccharides (LPS), endotoxins, flagellin, etc.) act as costimulatory signals for the innate immune system activation.
DAMPs and PAMPs are able to bind to TLR of the innate immune cells potentiating the immune response, cytokine release,
and immune cell recruitment. Furthermore, drugs can form drug-endogenous proteins adducts that can act as neoantigens.
Neoantigens presentation on specific HLA molecules could cause an adaptive immune response. Some HLA polymorphisms
favor the presentation of drug-adducted neoantigens. Thus, individuals carrying the HLA variant are more susceptible to
develop an adaptive immune response, typically leading to a T cell response directed at hepatocytes and usually involving
cytotoxic CD8 T cells that target the peptide drug exposed on MHC class I molecules on the hepatocytes. Cellular damage
also induces host adaptive and defense mechanisms, such as autophagy, antioxidant response and tissue repair. Moreover,
because of its biological role with constant exposure to foreign antigens, the liver has a strong natural predisposition towards
immune tolerance. This tolerance prevents a substantial immune response in the presence of the chemical insult, causing, at
most, a mild liver injury that resolves spontaneously despite continued drug intake (i.e., adaptation). Clinically relevant
liver injury is believed to result from a breakdown in hepatic immune tolerance. Concomitant inflammation can change the
cytokine environment in favor of an immune response. Host factors such as age, gender, genetic factors, lifestyles, disease
conditions, and co-medications are involved in the susceptibility of significant liver damage.
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Metabolic activation of a drug and the generation of a reactive intermediate, the
inadequate detoxification of the reactive intermediate, and the covalent binding to macro-
molecules can lead to subsequent liver toxicity [47]. The formation of reactive metabolites
has been well documented for drugs that have been withdrawn from the market or have a
warning for hepatotoxicity. Examples are nefazodone, metabolized via CYP3A4 produc-
ing hydroxynefazodone, triazoledione, and m-chlorophenylpiperazine as metabolites or
VPA, whose toxicity may be related to its metabolism through CYP2C9 and CYP2A6 to
4-ene-VPA [47].

The metabolic activation of APAP is perhaps the best-documented case. Although
APAP is metabolized to its glucuronidated and sulphated non-toxic metabolites in the
liver, APAP overdose saturates these pathways, and the excess APAP is metabolized by
CYP2E1 into the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI), which is
rapidly conjugated with glutathione (GSH), resulting in non-toxic mercapturic acid and
cysteine conjugates that are excreted in the urine. When hepatic GSH levels are limited,
free unconjugated NAPQI reacts with sulfhydryl groups on cysteine and lysine residues,
generating NAPQI-protein adducts (APAP-protein adducts) in hepatocytes, particularly in
mitochondria, leading to mitochondrial dysfunction [48] and cell death.

Generally, the elevated level of chemically reactive intermediates overwhelms the
capacity of the detoxification enzymes and endogenous antioxidants. A wide variety of
antioxidant mechanisms to counterbalance pro- and antioxidant compounds, including
GSH, superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) that are
pivotal in detoxification, are compromised, triggering imbalance between oxidants and
antioxidants, and generating oxidative stress. Most importantly, mitochondria are the most
affected hepatocyte organelles by GSH deficiency [49].

2.2.1. Oxidative Stress

Oxidative stress is the result of the generation of ROS, which are a by-product of
normal metabolism and have significant roles in cellular signaling and homeostasis. Some
DILI-causing drugs increase ROS accumulation through a variety of mechanisms [50].
Moreover, during the pathogenesis of DILI, the effect produced in the liver caused by the
depletion of GSH is translated into an increase in mitochondrial H2O2 [50].

Lipid peroxidation (LPO) may be involved in the mechanism of cell death during DILI.
During LPO, the generation of lipid radicals leads to the destruction of polyunsaturated
fatty acids (PUFAs) in lipid membranes [47]. LPO can cause rapid catastrophic breakdown
of the membrane potential and ion gradients, leading to necrotic cell death. Wendel and
collaborators [51] injected APAP in mice and observed massive LPO four hours after
injection, which was prevented by vitamin E pre-treatment. In principle, these results
indicated a major role for LPO in APAP-mediated DILI. However, the authors fed the
animals with a vitamin E-deficient diet with a high content of PUFAs. Nonetheless, a
more recent study by Jaeschke’s group [52] suggested that animals on a regular diet have
enough lipid-soluble antioxidants to prevent extensive LPO. APAP overdose causes severe
liver damage but a minor increase in the levels of LPO in normal animals [50]. Cell injury
induced by LPO requires not only oxidant formation but also impairment of the antioxidant
defense systems. Altogether, LPO might not be a relevant injury mechanism in APAP-
induced liver injury [53], which is the most extensively used experimental model to study
DILI. Thus, the role of LPO in DILI still remains currently controversial.

But is LPO a player of DILI in other DILI-causing drugs? Two anti-arrhythmic drugs—
dronedarone and amiodarone—triggered accumulation of ROS and intracellular lipids
in vivo [54]. Moreover, in vivo administration of methotrexate (MTX), a folate antagonist
used in the treatment of malignancies and autoimmune diseases, caused LPO product
malondialdehyde (MDA) [55]. Finally, VPA treatment induced significant increase in LPO
in isolated rat hepatocytes [56] and patients [57]. Thus, further investigation is needed in
order to elucidate whether LPO is a consequence of tissue injury or a major cause in the
mechanism of DILI.



Antioxidants 2021, 10, 390 8 of 34

Superoxide radicals (O2
•−) can also react with nitric oxide (NO), whose generation

is increased by an up-regulation of inducible NO synthase (iNOS) and endothelial nitric
oxide synthase (eNOS), forming peroxynitrite (ONOO−). Since the O2

•− anion scarcely
passes through the hepatocyte cell membrane, this process occurs exclusively within the
mitochondria. The highly reactive and potent oxidant ONOO− also causes nitration of
protein tyrosine residues which induces damage to mitochondrial DNA and the opening
of the mitochondrial membrane pore [58].

Therefore, the dysregulation of redox balance causes an impact on cellular and mito-
chondrial damage. The Kelch-like ECH-associated protein 1 (Keap1)/nuclear erythroid
factor type 2 (Nrf2) antioxidant system is involved in the regulation of oxidative stress [59].
In normal conditions, the activity of Nrf2 is suppressed by Keap1 in the cytoplasm. Keap1
contains thiols, which bind with Nrf2. Under pathological conditions, it is produced the
oxidation of these thiols causing the subsequent translocation of Nrf2 into the nucleus and
promoting the antioxidant response element (ARE). This system controls the expression of
antioxidant enzymes involved in the detoxification including, heme oxigenase-1 (HO-1),
glutathione S-transferase (GST), glutamate-cysteine ligase catalytic subunit (GCLC), and
NAD(P)H quinone oxidoreductase 1 (NQO1).

Therefore, oxidative stress imbalance (excessive generation of ROS and/or the inhibi-
tion of detoxification pathways) may be involved in DILI susceptibility and severity [60,61],
since it affects mitochondrial function and DNA integrity between others, inducing cell
death and immune-mediated liver damage.

Drugs associated with DILI such as troglitazone, flutamide, nimesulide, VPA, and
diclofenac have been observed to increase intracellular oxidants [8]. Based on this evidence,
different antioxidant compounds have been evaluated in clinical trials to find beneficial
effects on DILI prevention and/or management [62]. Thus, a prospective controlled trial
conducted in 50 patients concluded that the administration of N-acetylcysteine (NAC)
improved survival in patients with fulminant hepatic failure after APAP overdose [63].
Currently, NAC has the Food and Drug Administration (FDA) approval for the treatment
of potentially hepatotoxic doses of paracetamol and is the mainstay of therapy for APAP
toxicity. Interestingly, a more recent multicenter prospective study involving 173 patients
with ALF of various etiologies, including DILI-related ALF, showed that NAC improved
transplant-free survival in patients at early stage non-APAP-related ALF [64], and Bani-
asiadi et al. conducted a randomized clinical on 60 TB patients and also found that NAC
protected against anti-tuberculosis (TB) drug-induced hepatotoxicity [65].

Other compounds exhibiting antioxidant properties have received growing attention
in the last years, and different randomized clinical trials have been conducted to assess the
efficacy of silymarin [66–73], bicyclol [74–77], magnesium isoglycyrrhinate (MgIG) [78–80],
tiopronin [81], and L-carnitine [82] in the prevention and/or management of DILI. Among
these studies, it is worth highlighting the promising results in the reduction of DILI risk
and management of the disease that bicyclol and MgIG treatments have shown. However,
antioxidants effects should be interpreted cautiously given the low number of trials, the
small sample sizes and the differences regarding DILI criteria between trials. Thus, more
high-quality clinical trials are needed.

Interestingly, Koido and colleagues recently reported a polygenic risk score (PRS)
associated with oxidative stress imbalance in the susceptibility of DILI patients to drugs
including fasiglifam, amoxicillin-clavulanate, or flucloxacillin [83].

2.2.2. Mitochondrial Dysfunction

The redox control in the mitochondria is essential for the normal hepatocyte function.
Mitochondria have been considered an important target in DILI [84], since inhibition of
mitochondrial electron transport chain (ETC) associated with oxidative phosphorylation
(OXPHOS) results in ATP depletion and accumulation of ROS, leading to activation of cell
death signaling pathways.
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There are several reports demonstrating mitochondrial impairment triggered by dif-
ferent drugs known to cause DILI, including tolcapone [85], troglitazone [86,87], nefa-
zodone [88], nimesulide [89], and cerivastatin [90,91]. Moreover, Long and colleagues
used a multiscale, mechanistic model of DILI (DILIsym®, DILIsym Services Inc., a Sim-
ulations Plus Company, Research Triangle Park, NC, USA) to test the hypothesis that
mitochondrial dysfunction was the primary mechanism underlying tolcapone-mediated
toxicity, confirming that this drug had a mitochondrial uncoupling effect responsible for its
hepatotoxicity [92].

In addition, troglitazone and nimesulide caused mitochondrial oxidative stress and
changes in the mitochondrial permeability transition (MPT) in different in vitro models,
supporting the mitochondrial dysfunction hypothesis [93–96]. The onset of the MPT to
many mitochondria within a cell is known to drive a cascade of events, which leads gradu-
ally to autophagy, apoptosis, and necrotic cell death [97]. Moreover, Cho and colleagues
described that the combination of rotenone (inhibitor of mitochondrial complex I) and iso-
niazid (IHN), an anti-TB drug associated with DILI (inhibitor of mitochondrial complex II)
was synergistic in killing mice [98], confirming that underlying inhibition of complex I
can trigger IHN-induced hepatocellular injury [99]. Other mechanisms of mitochondrial
injury might be involved in the development of DILI. For example, VPA induces mitochon-
drial damage by inhibiting fatty acid metabolism, and mutations in POLG (mitochondrial
DNA [mtDNA] polymerase encoding gene) are a risk factor for VPA-induced DILI [100].
Moreover, there are some drugs reported to alter mtDNA homeostasis through different
mechanisms including inhibition of mtDNA replication and translation [101]. For example,
tacrine, ganciclovir, and diclofenac are known to trigger mtDNA damage [102,103].

However, in spite of the lack of current in vivo studies capable of demonstrating the
role of the mitochondrial dysfunction as the first cause of DILI, it has been proposed that
mitochondrial dysfunction is a source of DAMPs molecules that, in turn, can stimulate an
immune response [104–106]. Moreover, rotenone capable of activating the inflammasome,
which may be involved in DILI mechanisms [107].

Mitochondria are also thought to be essential in hepatotoxicity protection. Elimination
of mitochondria by selective autophagy (mitophagy) could restrict necrotic areas and
promote tissue regeneration, being a promising therapeutic target of DILI [108,109].

2.2.3. Endoplasmic Reticulum (ER) Stress

It has been previously reported that ER stress is produced during APAP-induced liver
injury due to an overaccumulation of ROS, which causes the dysregulation of Ca2+ balance
leading to the induction of the unfolded protein response (UPR) [110]. There are three
major proteins involved in this stress response; the inositol-requiring enzyme 1 (IRE1),
the protein kinase RNA (PKR)-like ER kinase (PERK), and the activating transcription
factor 6 (ATF6), which, in homeostatic conditions, are maintained inactivated by attaching
to the binding immunoglobulin protein (BiP) [111]. However, the increase of unfolded
proteins that compete with the transducers for BiP binding triggers their activation. If the
programmed mechanisms in the cell cannot mitigate ER stress, cell death is triggered in
an intricate mechanism that involves caspases activation, Ca2+ leakage from the ER and
mitochondrial damage.

Animal studies yielded controversial results about the UPR response after APAP
administration. While Nagy et al. observed the induction of ER stress following intraperi-
toneal administration of APAP [112,113], another study did not find any signs of UPR
activation [114]. Recently, Uzi and colleagues [110] reported that ER stress and UPR acti-
vation are a late event in the cascade of responses activated by APAP and coincided with
upregulation of CHOP, a transcriptional repressor downstream of PERK and IRE1 that
activates pro-apoptotic genes.

A recent study developed by the group of Maiuri showed that the use of diclofenac was
responsible for cytotoxicity in human hepatocytes due to increased levels of intracellular
Ca2+ and the activation of the ER stress sensor PERK and JNK [115].
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Altogether, it is very likely that mitochondrial damage, leading to the sustained
activation of cell death signaling pathways such as JNK and the onset of ER stress, might
be intertwined mechanisms, as it has been recently shown [48], adding complexity to the
pathophysiology of DILI.

2.3. BSEP Inhibition

The canalicular bile salt export pump (BSEP) is the only hepatocellular export system
for primary bile salts into the canaliculus. BSEP inhibition has been proposed as a common
mechanism of drug-induced cholestasis [116,117], since a complete genetic deficiency of
BSEP leads to cholestatic liver injury and liver failure [118]. Evidence suggests that some
drugs, such as bosentan [119] or troglitazone [120] induce DILI by inhibition of BSEP,
supporting the hypothesis that the retention of bile acids in hepatocytes can induce cellular
stress. On the other hand, the inhibition of BSEP or other bile salt transporters can initiate
the immune response directly or through the release of DAMPs [38]. However, BSEP
inhibitory potency alone is not enough for determining DILI risk, and additional factors
such as mitochondrial dysfunction [121] or inhibition of multidrug resistance-associated
proteins (MRP) [122] should be considered.

2.4. Activation of the Immune Response

It has been increasingly clear that the immune response during DILI is determinant,
since the presence of T cells and immune system activation in patients with DILI have been
observed [39,111,112]. The immune response consists of a hypersensitivity reaction which
provokes an inflammatory response that involves the innate and the adaptive immune
system. Different hypotheses have been suggested to explain drug-induced immune
system activation [46].

2.4.1. The Hapten Hypothesis

Haptens are small molecules that elicit an immune response only when covalent bind-
ing to endogenous proteins, forming adducts. Some drugs can form adducts by binding
with endogenous proteins. When the drug-protein adduct (neoantigen) is taken up by
antigen-presenting cells (APCs) and presented on major histocompatibility complex (MHC)
class II proteins to T cells, it can elicit a subsequent adaptive immune response [42]. How-
ever, this hypothesis alone cannot explain why only a minority of patients developed DILI
induced by drugs described to form haptens. Moreover, flucloxacillin, a well-known hepa-
totoxicant, was found to have a hapten-dependent and a hapten-independent mechanism
of adaptive immune activation, suggesting additional immunological pathways [123].

2.4.2. The Danger Hypothesis

This hypothesis complements the hapten hypothesis and supports that, in order to
precipitate an adaptive immune response, it is required an associated damage, a “danger
signal” [124]. This signal may include any intrahepatic or extrahepatic stressors, including
ROS, mild inflammation or infection [125].

After cell damage and cell death pathway activation, antigens derived from DAMPs
are released, binding to their respective pattern-recognition receptors (PRRs) on the APCs.
Depending on the endocytic pathway and the nature of the antigen, the APCs will present
it to the T cells on MHC I or MHC II molecules stimulating the adaptive immune re-
sponse [126]. Besides, the danger hypothesis involves the costimulation of T cells by APCs
through B7 receptors (CD80 and CD86) binding to CD28 on T cells. This costimulatory
signal is required in order to induce an immune response instead of promoting immune
tolerance [127].

Additionally, DAMPs are able to bind to Toll-like receptors (TLR) of the innate im-
mune cells potentiating the immune response, cytokine release, and immune cell recruit-
ment [128]. Among the main DAMPs found in the liver, the high mobility group box
protein 1 (HMGB1), ATP, heat shock proteins (HSP), and S100 proteins are included [129].
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Binding to these receptors triggers downstream signaling pathways leading to the acti-
vation of caspase-1 and the consequent cleavage of proinflammatory cytokines including
interleukins IL-1β and IL-18 [130], FasL, interferon gamma (IFNγ), and TNFα [46].

2.4.3. The Pharmacological Interaction (p-i) Hypothesis

This hypothesis postulates that chemically inert drugs can activate certain T cells by
specifically and directly forming non-covalent interactions with MHC molecules with
which they fit with a sufficient affinity, triggering the activation of the immune sys-
tem [131–134]. In the last years, different drugs have been suggested to activate the
immune system through p-i based stimulation [123,131,135–138].

2.4.4. The Altered Peptide Repertoire Hypothesis

This hypothesis proposes that a drug can interact with MHC I molecules in a specific
and non-covalent fashion and leads to presentation of altered endogenous peptides which
elicit immune reactions. It can be regarded as a subset of p-i concept, but with the main
key difference being the binding of novel self-peptides to the drug-MHC complex [139].

2.4.5. The Multiple Determinant Hypothesis

This hypothesis suggests that DILI is dependent on the overlap of many different
factors such as gender, age, genetics, environmental and physiological factors, etc. that
increase the probability of an adverse hepatic event [140,141]. Therefore, unless different
factors concurred simultaneously, DILI will not develop. This might partially explain
why the disease is so infrequent despite the risk genetic polymorphisms being common in
the population.

2.4.6. The Inflammatory Stress Hypothesis

This hypothesis suggests that a potential inflammation occurring during drug treat-
ment could interact with the action of the compound and produce liver injury [128]. Hepatic
inflammation is often observed in DILI; therefore, it is suggested that DILI reactions could
be unmasked by inflammation occurring during drug therapy. Inflammagens could bind
to TLR or T-cell receptors (TCR), initiating the expression of inflammatory mediators. The
inflammatory stress hypothesis has provided the first animal models in which liver injury
is induced from different drugs associated with human DILI [142,143].

Moreover, a common mechanism of immune response involves activation of the
inflammasome [144]. A recent study showed that the supernatant (presumably containing
DAMPs) from the incubation of human hepatocytes with drugs that induce DILI activates
the inflammasome in THP-1 cells, a macrophage cell line [145,146].

3. Risk Factors
3.1. Age

Age as a risk factor for DILI development remains unclear [147]. Data from two large
prospective studies, the US Drug-Induced Liver Injury Network (DILIN) and the Spanish
DILI Registry, did not find any differences in DILI distribution between older and younger
participants [148,149]. However, older population showed a higher risk for cholestatic liver
injury than younger people, who were associated with hepatocellular damage [148–152].

Nevertheless, age could be determinant for DILI induced by specific drugs [147], prin-
cipally antimicrobials and cardiovascular drugs. IHN and flucloxacillin-induced liver injury
risk are described to increase with age [153–155]. Meanwhile, valproic acid-associated
hepatotoxicity is more frequent in children under 10 years old [156].

3.2. Gender

Influence of gender in DILI incidence is ambiguous, since a balance between male and
female in DILI series has been observed [148,149,152]. However, gender may influence DILI
development triggered by specific causative agents [23]. For example, female susceptibility
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to developing DILI with autoimmune features has been described for minocycline and
nitrofurantoin-associated hepatotoxicity [157–159].

On the other hand, some differences in DILI outcome between genders have been
detected. Female gender is associated with hepatocellular pattern of liver injury, AIH, and
a worse outcome [148,149,160].

3.3. Alcohol Consumption

The role of alcohol consumption in DILI still generates controversy, since there is no
evidence that alcohol might be associated with neither susceptibility to DILI nor worse
outcomes in DILI patients [161]. However, currently alcohol use (more than two drinks
per day for women and more than three drinks per day for men, calculating 10 g ethanol
for each drink) is included in the RUCAM causality assessment scale as a risk factor for
DILI [162], which is hardly justified at the light of the available data. However, regular
alcohol intake may be a contributing factor for DILI associated with specific drugs such as
IHN, MTX, and halothane [23,163].

3.4. Drug Metabolism Genetic Polymorphisms

As we have argued above, formation of reactive metabolites is likely to be an initiat-
ing event in DILI. High levels of reactive metabolite formation in an individual may be
due to high levels or increased activities of enzymes from CYP450 family. Alternatively,
individuals may have low levels or reduced activities of enzymes that detoxify reactive
metabolites, such as UDP-glucuronosyltransferases (UGT), N-acetyl transferases (NAT),
and GST [164–167]. Finally, levels or expression of transporter proteins would modulate ex-
cretion of the water-soluble metabolites into bile or systemic circulation, being responsible
for the extension of exposure of hepatocytes to the drug/reactive metabolite [160,162,163]
(Table 2). Therefore, investigations on genetic susceptibility to hepatotoxicity have been
principally focused on drug metabolism, detoxification genes, and transporters [168].

3.4.1. Cytochrome P450 Family

CYP450 enzymes are involved in oxidation, reduction or hydrolysis of substrates,
being implicated in reactive metabolite formation. Therefore, genes of CYP450 family are
an interesting target for genetic studies of DILI susceptibility.

A recent assessment of 254 drugs has shown that compounds that are substrate of
CYP450 possess a higher risk of causing DILI, due to the formation of reactive metabo-
lites [188]. Besides being a substrate, drugs and herbal supplements can also act as either
inhibitors or inducers of CYP450 enzymes by affecting the pregnane X receptor (PXR) and
the constitutive androstane receptor (CAR), influencing the risk of suffering DILI [189].
However, although the variants of the enzymes of the CYP2C subfamily lead to high
heterogeneity in drug metabolism, different studies did not find any associations between
CYP2C8, CYP2C9 and CYP2C19 polymorphisms and susceptibility to DILI due to drugs
substrate of these cytochromes [189]. Nevertheless, genetic polymorphisms of CYP450
enzymes can influence susceptibility to DILI induced by specific drugs. For example, dif-
ferent studies have shown that genetic polymorphisms of CYP2E1 influenced susceptibility
to anti-TB drug induced hepatotoxicity [189]. Moreover, genetic variations of CYP2B6
have been associated with increased risk of hepatotoxicity following ticlopidine [177] and
efavirenz [174].

3.4.2. UDP-Glucuronosyltransferases

UGT enzymes are responsible for the process of glucuronidation, the addition of a
glucuronic acid moiety to xenobiotics in order to favor the excretion of drugs, toxins or
even endogenous substances. Some variants of the enzymes of the UGT2B subfamily have
been associated with DILI risk. For example, the UGT2B7*2 allele has been associated with
increased risk hepatotoxicity following diclofenac [164,190].
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Table 2. List of genetic polymorphisms related to susceptibility of DILI development.

Genetic Variation Association Drug Studied DILI Association References

Drug transporters genes

ABCB1 3435T Transporter Nevirapine ↓ Risk [169,170]
ABCB11 1331C Transporter Various ↑ Risk [171,172]

ABCB4 haplotypes Transporter Various ↑ Risk [171]
ABCC2 haplotypes Transporter Various ↑ Risk [164,173]

Cytochrome P450 genes

CYP2B6*6 Phase I Efavirenz ↑ Risk [174]
Nevirapine ↑ Risk [175]
Anti TBC ↓ Risk [176]

CYP2B6 rs7254579 Phase I Ticlopidine ↑ Risk [177]
CYP2C8 haplotypes Phase I Diclofenac ↑ Risk [164]

Repaglinide ↑ Risk [164]
CYP2E1 c1/c1 Phase I Isoniazid ↑ Risk [178]

Phase II enzymes genes

GST T1/M1 null Phase II Various ↑ Risk [179–183]
GPX1 198T Phase II Various ↑ Risk [184]

NAT2 slow acetylators Phase II Anti-TBC ↑ Risk [177,180,181]
SOD2 47C Phase II Various ↑ Risk [182,184]
UGT2B7*2 Phase II Diclofenac ↑ Risk [164]

UGT1A6/1A9 Phase II Tolcapone ↑ Risk [185,186]

Others

PTPN2 Tyrosine
phosphatase Various ↑ Risk [187]

POLG mtDNA
polymerase γ

Valproic acid ↑ Risk [100]

3.4.3. N-Acetyl Transferases

NAT enzymes mediate N-acetylation of a wide range of acrylamine and hydrazine
substrates, being involved in detoxification of multiple reactive metabolites. Acetylhy-
drazine is a key IHN metabolite that contributes to DILI development induced by this
anti-TB drug. It can undergo further metabolism by the enzyme NAT2 to the less toxic
diacetylhydrazine. Therefore, NAT2 has been described to have an implication in IHN-
induced liver injury [191]. The different alleles of NAT2 gene can be classified as fast
acetylators (NAT2 activity within the normal range), slow acetylators or ultra-slow acetyla-
tors, according to their efficiency to form diacetylhydrazine. Therefore, it was hypothesized
that slow acetylators may indirectly increase the accumulation of the toxic metabolite
acetylhydrazine due to their slower rate of detoxification. However, the first studies about
the association between acetylation status and anti-TB DILI were controversial [192–201].
Some of them observed that fast acetylators were prone to anti-TB DILI [192–194], others
that slow acetylator status was a significant risk factor of anti-TB DILI [195,196,198–200],
and some of them did not find any association between the acetylation status and risk of
anti-TB DILI [197,201]. These studies were based on determination of NAT2 status by ad-
ministration of a probe drug (phenotype analysis) rather than by direct genotyping of DNA.
The phenotyped acetylator status can be often influenced by many extrinsic factors such as
age, sex, alcohol consumption, comorbidities, etc. Moreover, the different study designs
(e.g., rechallenge or not), the phenotyping methods used and the different combination of
anti-TB drugs chosen in these studies could be responsible for the discrepancies observed.

Determination of the acetylator status by the genotype of NAT2 has alleviated some
of these discrepancies. The first study involving NAT2 genotyping in patients with IHN
DILI concluded that those positive for variants associated with slow acetylation showed
an increased risk of disease [202]. Several subsequent studies have confirmed this find-
ing [203–211].
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Moreover, a very recent work by Aithal’s group showed that the genotype NAT2*6/
NAT2*7 (ultra-slow acetylators) is associated with IHN-induced DILI [212].

3.4.4. Glutathione-S-Transferases

GSTs are a family of phase II enzymes that catalyze the conjugation of the reduced
form of GSH to xenobiotic substrates such as drugs for their detoxification. There are
eight distinct classes identified in the GST family; however, their implication in DILI
has been only demonstrated for GSTM1 and GSTT1. Deficiency in GST activity, because
of homozygous null mutations at GSTM1 and GSTT1 loci, modulate susceptibility to
drug- and xenobiotic-induced hepatotoxicity. Its prevalence is nearly 10% to 25% in
European countries for null GSTT1 and ~50% for null GSTM1, while Asian countries go
from 15% to 50% and 23% to 50%, respectively [213]. A genomic study of DILI patients
from the Spanish Registry concluded that carriers of double GSTT1-M1 null genotypes
had a 2.70-fold increased risk of developing DILI. The genetically determined reduction
in the ability to detoxify electrophilic compounds might play a role in determining the
susceptibility to develop DILI, as a general mechanism that occurs regardless of the type
of drug involved, predominantly in women [183]. GSTT1 and/or GSTM1 null genotypes
have been associated with hepatotoxicity triggered by tacrine, troglitazone [179,181] and
anti-TB drugs [175,177,201,202]. Thus, these data support the role of GST in protection
against hepatotoxicity.

On the other hand, depletion of free GSH due to GSH adducts formation has also been
associated with DILI development [214].

3.4.5. Transporters

Transport is the final step in determining the level of exposure to the reactive metabo-
lite. One superfamily of proteins that has been proposed as a candidate for having a
role in DILI susceptibility is the ATP-binding cassette (ABC) transporters [171]. They are
implicated in the transport of bile acids and drugs. ABCB11 (encoding BSEP), ABCB4
(phospholipid flippase MDR3), and ABCC2 (bilirubin export pump MRP2) are the trans-
porters most involved in DILI susceptibility. Mutations in these genes have been associated
with higher risk of suffering cholestatic DILI due to impairment of bile secretion and
accumulation of dangerous exogenous compounds (Table 2) [215]. Specifically, a study
involving patients on treatment with a combination of anti-TB and antiretroviral therapy
(ART) showed an association between the ABCB1 3435TT genotype (reported to have lower
expression level and protein folding) and DILI development [216].

Moreover, genetic variants of ABCG2 are associated with hepatotoxicity induced by
the tyrosine kinase inhibitor (TKI) sunitinib [217].

3.5. Antioxidant Defense System Genetic Polymorphisms

The magnitude of impact of reactive metabolites can be modified by a cellular response
to oxidative stress that is generated. Polymorphisms in the genes which are involved
in antioxidant defense processes may influence individual predisposition to DILI. The
mutation (47T > C) of SOD2 results in an amino acid substitution (alanine for valine),
leading to an increased import of SOD2 into the mitochondrial matrix [218] and finally
to an augmented risk of developing cholestatic/mixed DILI [184]. Moreover, it has been
suggested an association between SOD2 genotype and risk to develop hepatocellular
DILI [182]. Interestingly, a specific genetic variant of Cu/Zn superoxide dismutase (SOD1)
has been observed to be associated with a higher risk to develop DILI triggered by anti-TB
drugs [219]. On the other hand, mutations in GPX1 linked with a reduced enzymatic
activity have been also associated with DILI risk. GPX1 is the most abundant isoform of
GPX proteins and catalyzes the reduction of H2O2 and other organic peroxides by oxidizing
the reduced form of GSH. The polymorphism rs1050450 (198C > T) is the most studied one
since it shows to reduce the enzyme activity by 40% [220,221]. Moreover, patients with the
genetic variant GPX1 Pro200Leu show a higher risk of developing cholestatic DILI [184].
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3.6. HLA Haplotypes

Multiple human leukocyte antigen (HLA) haplotypes are associated with increased
risk of DILI development, suggesting a genetic predisposition to an adaptive immune
response [165]. The associations identified in genome-wide genetic studies (GWAS) and
candidate gene studies are generally drug-specific and involve MHC class I proteins
(HLA-A, -B, -C) or MHC class II proteins (HLA-DP, -DQ, -DR) [222] (Table 3).

Table 3. Human leukocyte antigen (HLA) risk alleles associated with DILI susceptibility.

Drug Genetic Variation Odds Ratio Population References

Amoxicillin-clavulanate

A*02:01 2.2 Caucasian [223]
A*30:02 6.7 Caucasian [224]
B*18:01 2.9 Caucasian [224]

DRB1*07:01 0.18 ˆ Caucasian [225]
DRB1*15:01-DQB1*06:02 3 Caucasian [223–227]

Clometacin B*08 - Caucasian [228]

Diclofenac DRB1*13 ˆ Caucasian [229]

Efavirenz + Anti-TB
B*57:02 8.1 African [230]
B*57:03 26.8 African [230]

Fenofibrate A*33:01 58.7 Caucasian [231]

Flucloxacillin
B*57:01 80.6 Caucasian [232]
B*57:03 79.2 Caucasian [233]

DRB1*0701-DQB1*0303 9.7 Caucasian [232]

Flupirtine DRB1*16:01-DQB1*05:02 18.7 Caucasian [234]

Lapatinib
DQA1*02:01 9–14.1 Caucasian [235,236]
DQB1*02:02 6.9–8.6 Caucasian [235,236]
DQB1*07:01 6.9–14.1 Caucasian [235–237]

Lumiracoxib DRB1*15:01-DQB1*06:02-
DRB5*01:01-DQA1*01:02 5 Caucasian [238]

Minocycline B*35:02 29.6 Caucasian [239]

Nevirapine
B*58:01 - African [240]

DRB1*01:01 3–4.8 Caucasian [241,242]
DRB1*01:02 - African [240]

Pazopanib B*57:01 2 - [243]

Terbinafine A*33:01 40.5 Caucasian [231]

Ticlopidine

A*33:01 163.1 Caucasian [231]
A*33:03 13 Japanese [244]
B*44:03 6.6 Japanese [244]

Cw*1403 7.3 Japanese [244]
DQB1*06:04 10.1 Japanese [244]
DRB1*13:02 9 Japanese [244]

Tiopronin A*33 - Japanese [245]

Trimethoprim-
Sulfamethoxazole

B*14:01 9.2 Caucasian [246]
B*35:01 - Africans [246]

Ximelagatran DRB1*07:01-DQA1*02 4.4 Caucasian [136]
DQB1*02:01 - Indian [247]

ˆ protective effect.

Currently, the strongest association observed between an HLA allele and DILI con-
cerns HLA-B*57:01 and flucloxacillin [232,248,249]. However, because of the rarity of DILI
associated with flucloxacillin, only 1:500–1000 patients carrying the risk allele will develop
DILI [38], indicating that there must be other risk factors for flucloxacillin DILI apart from
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a specific HLA genotype and precluding the use of genetic testing in the pre-prescription
of this antibiotic (very low positive predictive value [PPV]). However, HLA genotyping
may be of value in reinforcing diagnoses due to the high negative predictive value (NPV).
Conversely, HLA-B*57:01 association with abacavir treatment has an NPV of 100% and a
PPV of 48% [250]. Thus, HLA-B*57:01 genotyping prior to abacavir prescription has been
mandated by the FDA as well as the European Medicine Agency (EMA). Other HLA alleles
with a strong DILI association are HLA DRB1*15:01-DQB1*06:02 haplotype for amoxicillin-
clavulanic-associated hepatotoxicity [213,214,217]. Moreover, HLA-DRB1*07:01 carriers
are at higher risk of developing DILI caused by ximelagatran [136] and lapatinib [237].
Interestingly, a recent GWA study identified a novel association between HLA-A*33:01
allele and DILI risk due to different drugs such as terbinafine, fenofibrate, and ticlopi-
dine [231]. Moreover, the same study found an association between HLA-A*33:01 allele
and cholestatic and mixed DILI, but not hepatocellular DILI, indicating that genetic factors
also influence the DILI pattern.

It is important to notice that other liver disorders commonly mistaken with DILI
are also related to HLA haplotypes. DILI can display autoimmune features mimicking
idiopathic AIH [251]. Polymorphisms HLA-DRB1*03:01 and HLA-DRB1*04:01 are well-
known susceptibility alleles for AIH development [252,253]. However, patients suffering
from DILI with autoimmune features are not enriched in these alleles [254]. Hence, it
would be important for the differential diagnosis to verify if a patient with suspected DILI
carries these specific HLA alleles.

3.7. Other Genetic Polymorphisms Associated with DILI Susceptibility

Recently, the single nucleotide polymorphism rs2476601 (chr1: 114377568 > A/G)
consisting of an amino acid change, tryptophan for arginine at codon 620 of the protein
tyrosine phosphatase non-receptor type 22 (PTPN22) gene has been associated with DILI.
PTPN22 function affects the responsiveness of T and B cell receptors, and different muta-
tions of PTPN22 have been associated with susceptibility to autoimmune diseases [255]. A
GWAS gathered a cohort of 2048 DILI cases and 12,429 control individuals where major
ethnicities were included (European, African, American, and Hispanic) and showed a
strong association of the rs2456601variant with DILI risk associated with many different
classes of drugs [187]. This variant is also associated with autoimmune diseases risk, being
linked with alterations in the composition of intestinal microbiota, reinforcing the role of
immune system in DILI [256,257].

In summary, the study of genetic polymorphisms is a rapid technique to perform in
patients, focused on genes involved in drug metabolism previously described, which have
an association with DILI susceptibility [258]. However, the influence in clinical practice
of polymorphisms involved in drug metabolism is over 20% to 25% of all current drug
therapies, which support the hypothesis of DILI being a multifactorial disease [259], but
also restricts the use of genetic testing in clinical practice due to its low PPV. However,
HLA alleles are still a great contribution to improve the accuracy of DILI diagnosis [260] or
to assist in distinguish DILI with autoimmune features from idiopathic AIH.

4. Biomarkers

Serum transaminases and bilirubin are the traditional biomarkers used for liver
damage detection. Although useful, they have some limitations since they are not DILI-
specific [261] (Table 4).

4.1. Diagnosis

Currently, serological biomarkers used in DILI diagnosis include ALT, aspartate
aminotransferase (AST), ALP, and TBL [264].

At present, the only biomarker proposed for specific diagnosis of DILI is the protein-
derived APAP-cysteine (APAP-CYS), useful for detecting APAP overdose [263]. However,
it is difficult to develop specific biomarkers for DILI due to its low prevalence and its
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capacity of mimicking almost any hepatobiliary conditions. Some of the identified HLA
risk alleles for DILI have an NPV > 95%, which enables the use of HLA genotyping to
strengthen DILI diagnosis. In cases where the patient does not carry the allele of risk
alternative etiologies should be searched out [272].

Table 4. Serum biomarkers associated with DILI.

Serum Biomarkers Advantage Limitations Comments References

AOPPs, IMA
- Correlation with ALP, TBL
- Diagnosis and severity

- Not DILI-specific
- Not liver-specific
- Not prognostic

biomarkers

- Associated with
oxidative stress. [262]

APAP-CYS
- Specific for APAP overdose
- Diagnosis
- Sensitive and specific

- Only valid for diagnosis
of APAP-induced liver
injury.

- Three approaches to
measure it:

Immunoassay
HPLC-EC
HPLC-mass spectrometry

[263]

Bilirubin

- Liver-specific
- Elevations of TBL levels

correlate with whole liver
function.

- Not DILI-specific
- Do not provide

information regarding
the mechanism of the
injury.

- Identify potential DILI
cases after DILI injury
has occurred.

[261,264]

GLDH

- Liver-specific
- Not altered in muscle injury
- Not impacted by gender or

age
- Diagnosis

- Poor sensitivity
- Not DILI-specific

- Associated with
mitochondrial damage [161,255,256]

HMGB1
- Necrotic and inflammation

marker
- Prognosis

- Not liver-specific
- Not DILI-specific

- High levels are
associated with poor
outcome

[23,265]

K18

- Ratio ccK18:K18 predicts
degree of injury and cell death
type

- Prognosis

- Not liver-specific
- Not DILI-specific

- K18 determines
likelihood of poor
outcomes

[266,267]

MCSFR
- Indicative of severe DILI
- Inflammation marker
- Prognosis

- Not liver-specific
- Controls macrophages

proliferation,
differentiation and
function

[267]

miR-122 - Early diagnosis and prognosis
- High variability among

individuals
- Not DILI-specific

- Associated with
mitochondrial damage

- Detected free circulating
or in EVs

[268,269]

mtDNA

- Useful for prognosis
- Mechanistic biomarker
- Early prediction for acute

injury

- Not DILI-specific
- Not hepatocellular

damage-specific
- Poor sensitivity

- Associated with
mitochondrial damage [167,270]

OPN
- Adaptation/repair/survival

biomarker
- Prognosis biomarker

- Not liver-specific
- Not DILI-specific

- Pro-inflammatory
cytokine

- Associated with
necrosis levels

[264,267]

Transaminases
- Can reflect hepatic lesions
- Diagnosis and prognosis

- Not liver-specific
- Not DILI-specific

- Associated with muscle
and cardiac damage

- Poor correlation with
histological patterns and
lesion severity

[23,271]

AOPPs, advanced oxidation protein products; APAP-CYS, acetaminophen-cysteine; GLDH, glutamate dehydrogenase; HMGB1, high
mobility group box protein 1; HPLC-EC, High Performance Liquid Chromatography with Electrochemical Detection; IMA, ischemia-
modified albumin; K18, keratin-18; ccK18, caspase-cleaved keratin-18; MCSFR, macrophage colony-stimulating factor receptor; miR-122,
microRNA-122; mtDNA, mitochondrial DNA; OPN, osteopontin; TBL, total bilirubin.
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Glutamate dehydrogenase (GLDH) is a mitochondrial matrix enzyme required for acid
metabolism, urea, and Krebs cycles. It shows the highest expression in liver tissue [273] and
it has been used as a mechanistic biomarker of mitochondrial damage and for DILI outcome
prediction. Due to the liver-specificity of GLDH, measuring its levels can differentiate liver
from muscle injury, being a useful marker when ALT is elevated [267]. Although helpful,
its sensitivity as diagnostic biomarker is poor, since there is controversy about its accuracy
in predicting hepatocyte necrosis [167,264].

Very recently, Xiao et al. proposed advanced oxidation protein products (AOPPs) and
ischemia-modified albumin (IMA) serum levels, as well as AOPPs/albumin (ALB) and
IMA/ALB ratios as new oxidative stress biomarkers for DILI diagnosis and severity [262].

AOPPs are dityrosine-containing and crosslinking protein products formed during
oxidative stress by reaction of plasma proteins with chlorinated oxidants, often carried by
ALB in vivo [274]. Meanwhile, IMA is a known myocardial infarction biomarker that can
be generated due to the modification of the N-terminus of ALB by ROS like superoxide
and hydroxyl radicals [275].

A prospective, single-centered study was conducted by the screening of 128 pa-
tients with DILI (68 non-severe and 60 severe) and 38 healthy individuals [262]. AOPPs,
AOPPs/ALB ratio, IMA, and IMA/ALB ratio were all positively correlated with ALP
and TBL serum levels of DILI patients at admission. Moreover, DILI patients showed
significantly higher AOPPs and IMA serum levels and AOPPs/ALB and IMA/ALB ratios
as compared to those shown by controls. By performing a multivariate logistic regression
model, Xiao et al. also concluded that patients with higher AOPPs and IMA serum lev-
els were more likely to suffer from severe DILI. Meanwhile, patients with lower AOPPs
and IMA serum levels were more likely to suffer from mild DILI. These results suggest
these variables may be reliable new biomarkers to improve DILI diagnosis, although more
studies with higher sample size are needed to confirm the association between AOPPs and
IMA and DILI.

4.2. Prediction

Although many genetic polymorphisms have been associated with DILI (Tables 2 and 3),
almost none of them are being used as predictive biomarkers for different reasons. First,
genetic polymorphisms found are normally associated with specific drugs, and their PPV
is generally low. Nevertheless, it would be interesting to invest in predictive tests and use
them in cases where drugs known to induce DILI are the only available treatment. Besides,
it would be essential to determine which drug is causing liver injury when the patient is
consuming different drugs with the same temporal pattern.

4.3. Prognosis

Most known prognosis biomarkers are serum biomarkers reported in APAP-DILI studies.
HMGB1 protein is usually associated with DNA under normal conditions, since it is

involved in DNA replication, recombination, repair and gene transcriptional regulation.
Upon damage, this protein is passively released by necrotic cells; therefore, it has been used
as a necrosis and inflammation progression biomarker [23]. HMGB1 can also be secreted
by monocytes and macrophages in a hyperacetylated form, acting as a late inflammation
mediator [265]. Therefore, HMGB1 has been proposed as a promising biomarker in DILI
due to its signaling role in inflammation and necrosis pathways. However, evaluation of
HMGB1 in serum from patients is still needed and, until now, no studies have tested the
prognostic value of HMGB1 in DILI. Moreover, the mechanisms by which HMGB1 may
mediate injury progression, its role on systemic inflammation, the receptors involved and
signaling pathways activated remain largely unknown [276]. In the same line, elevated lev-
els of mtDNA were proposed as prognosis DILI biomarker, but it showed poor sensitivity
values for DILI prediction [263].

Keratin-18 (K18) is a structural protein of the cytoskeleton that has a full-length form
and a caspase-cleaved fragment (ccK18). Both forms are elevated in circulation after DILI,
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showing potential for prognostic use [167]. During hepatocellular necrosis, full-length K18
is passively released from necrotic cells into the blood. On the other hand, when apoptosis
occurs, K18 is cleaved by caspases and released into the blood. Hence, early hepatocyte
damage could be detected by measuring K18 (necrosis indicator) and ccK18 (apoptosis
indicator) levels [266]. Despite the fact that serum proportion levels of K18 and ccK18 may
be useful indicators of DILI, elevated levels of this protein are also found in patients with
hypoxic hepatitis, alcohol steatohepatitis (ASH), non-alcoholic steatohepatitis (NASH), and
other related disorders [263], in which may represent liver inflammation.

Macrophage colony-stimulating factor receptor (MCSFR), known as a marker of
inflammation, is as a novel candidate biomarker for DILI, since it is believed to be re-
leased from activated macrophages during DILI [277]. In one study of Safer and Faster
Evidence-based Translation (SAFE-T), patients under flupirtine treatment showed increased
MCSFR levels in comparison to APAP-induced hepatotoxicity cases, suggesting that high
serum/plasma levels of MCSFR may have value as a prognostic marker for liver disease
associated with inflammation and immune system activation [32,267].

The other candidate soluble biomarker that was found to have prognostic ability in
the study mentioned above was osteopontin (OPN), which has shown more predictive
capacity than TBL [267]. OPN is an extracellular matrix phosphoglycoprotein that mediates
diverse biological functions, such as cell-mediated immune responses, and plays a role in
chronic inflammatory diseases [278]. Interestingly, elevations in serum and plasma OPN
levels were also been found in different recent studies of ALF patients [279–281].

4.4. Extracellular Vesicles

The role of extracellular vesicles (EVs) as critical mediators of intercellular communica-
tion has become increasingly popular in the context of liver injury due to their implication
for human diagnostics [282]. EVs are membrane-derived vesicles which can be released by
different cell types to the extracellular media during liver injury, being found in biological
fluids including blood and urine [283]. Regardless of the source cell, EVs carry lipids, pro-
teins, coding, and non-coding RNAs and mtDNA. These vesicles can be captured through
different mechanisms, being the most common the endocytosis of the vesicles and the subse-
quent release of the cargo inside the cytoplasm of the recipient cells, causing modifications
in their physiological processes [284]. Therefore, many of the EVs-associated molecules
such as proteins, mRNAs/microRNAs (miRNAs), and drug metabolizing enzymes (DMEs)
could have potential efficacy as new biomarkers [285].

The molecules associated with EVs that are showing the most promising results as
liver diseases biomarkers are the miRNAs [286]. miRNAs are small non-coding RNAs
(19–22 nucleotides) which regulate gene expression. The mechanism underlying miRNAs
relays on binding to 3′-untranslated sequence of mRNAs leading to their degradation or
suppression of translation [287]. miRNAs can be found in two different ways: free circu-
lating miRNAs or associated with vesicles [288]. EVs are generally well-preserved [289],
thereby making EVs-miRNA stable biomarkers [290]. Changes in the expression of miR-
NAs are involved in different pathophysiological conditions, including liver injury [291]
and it has been demonstrated that some miRNAs are associated with DILI development
and progression. miR-122 is the most abundant miRNA in the liver [292]. Advantages of
miR-122 as liver injury biomarker, include its higher liver-specificity, and greater sensitivity
than ALT as it is detected earlier [268]. A recent study describing miRNA changes in sera
of subjects with acute DILI showed that miR-122 was the most significantly elevated in
DILI subjects compared to controls (20-fold approximately) [293]. Interestingly, miR-122
levels were lower among DILI subjects who died compared to those who survived, yet
the same miRNA was significantly higher in DILI subjects who died than in controls. The
authors hypothesized that, in the case of DILI survivors with higher miR-122, they could
develop a compensatory response to liver injury that leads to recovery. Elevated levels of
miR-122 have been also associated with APAP-DILI [294], drug-induced steatosis [295],
and heparin treatment [296].
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To characterize EVs released by drug-treated hepatocytes, Mosedale et al. used an
in vitro model with primary human hepatocytes treated with tolvaptan. The authors found
an increase in the release of EVs-miR-122 directly associated with mitochondrial-induced
apoptosis [297]. The authors suggested that the release of EVs-miRNA, could also promote
the adaptive immune response characteristic of DILI.

Interestingly, a recent work has demonstrated the role of EVs derived from healthy hep-
atocytes in maintaining normal liver immunotolerance, which can promote a tolerogenic
immune state. On the contrary, changes of the EVs released by drug-treated hepatocytes
can promote the loss of immune tolerance in the liver, since they are taken up by monocytes
and deliver functional miRNAs and other contents acting DAMPs [298]. However, the lack
of preclinical studies precludes the understanding of the function of EVs in DILI.

In summary, even though there are promising results, there are no specific biomarkers
for DILI described to-date. Nonetheless, a combination of several biomarkers including
miR-122, HGMB1, and total K-18, rather than an isolated analyte, could be of value as an
early indicator of liver injury development.

5. Role of Oxidative Stress in DILI: Future Perspectives

There is a continuously growing knowledge of the contribution of oxidative stress
and the antioxidant system in the underlying mechanism of DILI. Although DILI can
arise from the concurrence of multiple factors or mechanisms, the oxidative stress-induced
cell damage is highly consistent with other proposed mechanisms, given its links with
mitochondrial damage, inflammation, immune response and cell death.

Drugs can induce oxidative stress through different mechanisms, such as generation
of chemically reactive metabolites, impairment of the mitochondrial respiratory chain,
depletion or reduction of the antioxidant enzymes pool, and induction of redox cycles [299].
Therefore, oxidative stress is thought to be the main mechanism implicated in the toxicity
of many drugs, although the cell redox status imbalance leading to hepatocyte damage can
be caused by different processes depending on the specific drug.

ROS production and antioxidant compounds depletion (e.g., GSH) are considered
two of the most sensitive parameters of drug-induced hepatotoxicity [300–302]. Thus,
future preclinical DILI studies will probably include high content screening assays in which
oxidative stress would be an essential endpoint to measure [303–306].

Moreover, the wide number of associations between drug hypersensitivity reactions
and polymorphisms of genes that encode enzymes related to the redox system suggests
the important role of oxidative stress in onset and development of cell damage and tissue
injury [307]. Individuals carrying specific polymorphisms in genes related to the cellular
antioxidant mechanism and drug metabolism are more susceptible to DILI, suggesting that
drug-induced oxidative stress involvement in DILI will also depend on host factors and
will not have the same influence in all DILI cases.

Due the importance of oxidative stress in DILI, antioxidant therapy is thought to
be a promising approach to prevent or manage DILI in the future. Although different
randomized clinical trials have been conducted to assess the efficacy of various compounds
with antioxidant properties [62], more high-quality clinical trials are needed to properly
understand the effects of antioxidants in DILI.

The current research on diagnostic and prognostic biomarkers in DILI suggest that
oxidative stress-related molecules could be reliable biomarkers in the future. As some
examples, the abovementioned AOPPs/ALB and IMA/ALB ratios and GLDH levels seem
to be promising candidates, although more studies with higher sample size are needed to
confirm their relevance.

6. Conclusions

DILI represents a diagnostic challenge with increasing incidence over the last years.
Ongoing prospective DILI registries and multinational collaborative efforts (European
Cooperation in Science & Technology [COST] Action CA-17112, Prospective European
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Drug-Induced Liver Injury Network; https://proeurodilinet.eu/; accessed on 4 March
2021) are proving essential for a proper DILI characterization in phenotype and severity
and for advancing knowledge on the mechanism underlying this disorder. This situation
results from our lack of understanding of the pathophysiological mechanisms underlying
the hepatotoxic reaction and the factors that contribute to the variability of the incidence,
whether related to the host responses or to drug factors. Moreover, due to the multilayer
nature of DILI, there are currently no functional animal models to study the underlying
mechanism of the disease [308]. There are different mechanistic hypotheses about DILI
development. It is clear that drug properties, host factors, and environmental conditions
interact to determine DILI susceptibility, phenotypic expression, and outcome. It is possible
that mitochondrial injury, oxidative stress, ER stress and/or inhibition of transporters are
responsible for the upstream events of DILI or that these mechanisms are complementary
and are involved in initiating an immune response. Since specific HLA genotypes are the
genetic factor that more consistently have been associated with DILI risk, it seems that
many DILI instances are, indeed, immune-mediated.

Based on clinical data from patients with idiosyncratic toxic drug reactions, different
hypotheses on immune and non-immune-mediated mechanisms have been postulated to
explain its mechanism of injury. Idiosyncratic DILI requires non-immune- and immune-
mediated mechanisms for hepatic injury to occur. Usually, liver shows immunotolerance,
since, due to its biological role, it is constantly exposed to foreign antigens. However, when
the state of immune tolerance is broken, significant liver injury occurs [298,309].

The current lack of specific biomarkers often leads to incorrect diagnosis of DILI
and inappropriate therapies in these patients. For that reason, further research on DILI
biomarkers is urgently needed and in the meantime refinement of RUCAM scale, as well as
its combination with others approaches including the new in vitro preclinical assays such
as the MH cell test once it is properly validated, might be determinant for the achievement
of an accurate DILI diagnosis.

Due to the relative rarity of DILI, pursuance in collaborative efforts reached during
the last years is needed.
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